T. M. Filisetti-cozzi and N. C. Carpita, Measurement of uronic acids without interference, 1991.

R. A. Abou-shanab, P. Van-berkum, and J. S. Angle, Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Nirich serpentine soil and in the rhizosphere of Alyssum murale, Chemosphere, vol.68, pp.360-367, 2007.

R. I. Abou-shanab, T. Delorme, J. S. Angle, R. L. Chaney, K. Ghanem et al., Phenotypic Characterization of Microbes in the Rhizosphere of Alyssum murale, Int. J. Phytoremediation, vol.5, pp.367-379, 2003.

T. Aizawa, N. B. Ve, K. Kimoto, N. Iwabuchi, H. Sumida et al., Curtobacterium ammoniigenes sp. nov., an ammonia-producing bacterium isolated from plants inhabiting acidic swamps in actual acid sulfate soil areas of Vietnam, Int. J. Syst. Evol. Microbiol, vol.57, pp.1447-1452, 2007.

S. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

H. Amir, Y. Cavaloc, A. Laurent, P. Pagand, P. Gunkel et al., Arbuscular mycorrhizal fungi and sewage sludge enhance growth and adaptation of Metrosideros laurifolia on ultramafic soil in New Caledonia: A field experiment, Sci. Total Environ, vol.651, pp.334-343, 2019.

,

H. Amir, D. A. Jasper, and L. K. Abbott, Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils, Mycorrhiza, vol.19, pp.1-6, 2008.

B. L. Anacker, The nature of serpentine endemism, Am. J. Bot, vol.101, pp.219-224, 2014.

M. Anisimova and O. Gascuel, Approximate likelihood ratio test for branchs: a fast, accurate and powerful alternative, Syst. Biol, vol.55, pp.539-552, 2006.

,

A. Ayangbenro and O. Babalola, A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents, Int. J. Environ. Res. Public Health, vol.14, 2017.

R. Barzanti, F. Ozino, M. Bazzicalupo, R. Gabbrielli, F. Galardi et al., Isolation and Characterization of Endophytic Bacteria from the Nickel Hyperaccumulator Plant Alyssum bertolonii, Microb. Ecol, vol.53, pp.306-316, 2007.

C. Becerra-castro, P. S. Kidd, Á. Prieto-fernández, N. Weyens, M. Acea et al., Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterisation, Plant Soil, vol.340, pp.413-433, 2011.

C. Becerra-castro, A. Prieto-fernández, V. Álvarez-lopez, C. Monterroso, M. I. Cabello-conejo et al., Nickel Solubilizing Capacity and Characterization of Rhizobacteria Isolated from Hyperaccumulating and Non-Hyperaccumulating Subspecies of Alyssum Serpyllifolium, Int. J. Phytoremediation, vol.13, pp.229-244, 2011.

,

U. Behrendt, A. Ulrich, P. Schumann, D. Naumann, and K. Suzuki, Diversity of grassassociated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; polyphasic characterization of Subtercola pratensis sp. nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov., sp, Int. J. Syst. Evol. Microbiol, vol.52, pp.1441-1454, 2002.

L. Bordez, P. Jourand, M. Ducousso, F. Carriconde, Y. Cavaloc et al., Distribution patterns of microbial communities in ultramafic landscape: a metagenetic approach highlights the strong relationships between diversity and environmental traits, Mol. Ecol, vol.25, pp.2258-2272, 2016.

,

K. U. Brady, A. R. Kruckeberg, and H. D. Bradshaw, Evolutionary Ecology of Plant Adaptation to Serpentine Soils, Annu. Rev. Ecol. Evol. Syst, vol.36, pp.243-266, 2005.

F. Brian-jaisson, Identification et caractérisation des exopolymères de biofilms de bactéries marines, 2014.

R. R. Brooks, Serpentine and its vegetation: a multidisciplinary approach, Dioscoride, 1987.

M. R. Bruins, S. Kapil, and F. W. Oehme, Microbial Resistance to Metals in the Environment, Ecotoxicol. Environ. Saf, vol.45, pp.198-207, 2000.

D. Bulgari, P. Casati, P. Crepaldi, D. Daffonchio, F. Quaglino et al., Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L, Plants. Appl. Environ. Microbiol, vol.77, pp.5018-5022, 2011.

D. Bulgari, A. Minio, P. Casati, F. Quaglino, M. Delledonne et al., Curtobacterium sp, Genome Sequencing Underlines Plant Growth Promotion-Related Traits, 2014.

, Genome Announc, vol.2, pp.10-11

A. B. Chase, P. Arevalo, M. F. Polz, R. Berlemont, and J. B. Martiny, Evidence for Ecological Flexibility in the, Cosmopolitan Genus Curtobacterium. Front. Microbiol, vol.7, pp.1-11, 2016.

A. B. Chase, Z. Gomez-lunar, A. E. Lopez, J. Li, S. D. Allison et al., Emergence of soil bacterial ecotypes along a climate gradient, Environ. Microbiol, vol.20, pp.4112-4126, 2018.

A. B. Chase, U. Karaoz, E. L. Brodie, Z. Gomez-lunar, A. C. Martiny et al., Microdiversity of an Abundant Terrestrial Bacterium Encompasses Extensive Variation in Ecologically Relevant Traits, MBio, vol.8, pp.1-11, 2017.

F. Chevenet, C. Brun, A. Bañuls, B. Jacq, and R. Christen, TreeDyn: towards dynamic graphics and annotations for analyses of trees, BMC Bioinformatics, vol.7, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00321061

C. C. Chien, B. C. Lin, and C. H. Wu, Biofilm formation and heavy metal resistance by an environmental Pseudomonas sp, Biochem. Eng. J, vol.78, pp.132-137, 2013.

,

M. D. Collins and D. Jones, Reclassification of Corynebacterium flaccumfaciens, Corynebacterium betae, Corynebacterium oortii and Corynebacterium poinsettiae in the genus Curtobacterium, as Curtobacterium flaccumfaciens comb. nov. Microbiology, vol.129, pp.3545-3548, 1983.

C. E. De-fretes, R. Suryani, Y. Asih-purwestri, T. R. Nuringtyas, and D. Widianto, Diversity of Endophytic Bacteria in Sweet Sorghum (Sorghum bicolor (L.) Moench) and Their Potential for Promoting Plant Growth, Indian J. Sci. Technol, vol.11, pp.1-10, 2018.

,

A. Dereeper, S. Audic, J. Claverie, and G. Blanc, BLAST-EXPLORER helps you building datasets for phylogenetic analysis, BMC Evol. Biol, vol.10, 2010.

A. Dereeper, V. Guignon, G. Blanc, S. Audic, S. Buffet et al., Phylogeny.fr: robust phylogenetic analysis for the non-specialist, Nucleic Acids Res, vol.36, pp.465-469, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324099

G. Echevarria, S. T. Massoura, T. Sterckeman, T. Becquer, C. Schwartz et al., Assesment and control of the bioavailability of Nickel in soils, Environ. Toxicol. Chem, vol.25, p.643, 2006.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

A. Elbeltagy, K. Nishioka, H. Suzuki, T. Sato, Y. Sato et al., Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties, Soil Sci. Plant Nutr, vol.46, pp.617-629, 2000.

,

H. Etesami, Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects, Ecotoxicol. Environ. Saf, vol.147, pp.175-191, 2018.

P. Giovanella, L. Cabral, A. P. Costa, F. A. De-oliveira-camargo, C. Gianello et al., Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals, Ecotoxicol. Environ. Saf, vol.140, pp.162-169, 2017.

M. Gonin, S. Gensous, A. Lagrange, M. Ducousso, H. Amir et al., Rhizosphere bacteria of Costularia spp. from ultramafic soils in New Caledonia: diversity, tolerance to extreme edaphic conditions, and role in plant growth and mineral nutrition, Can. J. Microbiol, vol.59, pp.164-174, 2013.

V. Gourmelon, L. Maggia, J. R. Powell, S. Gigante, S. Hortal et al., Environmental and Geographical Factors Structure Soil Microbial Diversity in New Caledonian Ultramafic Substrates: A Metagenomic Approach, PLoS One, vol.11, 2016.

L. Guentas, S. Gensous, Y. Cavaloc, M. Ducousso, H. Amir et al., Burkholderia novacaledonica sp. nov. and B. ultramafica sp. nov. isolated from roots of Costularia spp. pioneer plants of ultramafic soils in New Caledonia, Syst. Appl. Microbiol, vol.39, pp.151-159, 2016.

G. Guibaud, S. Comte, F. Bordas, S. Dupuy, and M. Baudu, Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel, Chemosphere, vol.59, pp.629-638, 2005.

S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

P. Gupta and B. Diwan, Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies, Biotechnol. Reports, vol.13, pp.58-71, 2017.

J. Hartley, J. W. Cairney, and A. A. Meharg, Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment ?, Plant Soil, vol.189, pp.303-319, 1997.

R. Idris, R. Trifonova, M. Puschenreiter, W. W. Wenzel, and A. Sessitsch, Bacterial Communities Associated with Flowering Plants of the Ni Hyperaccumulator Thlaspi goesingense, Appl. Environ. Microbiol, vol.70, pp.2667-2677, 2004.

,

S. Isnard, L. L'huillier, F. Rigault, and T. Jaffré, How did the ultramafic soils shape the flora of the New Caledonian hotspot ?, Plant Soil, vol.403, pp.53-76, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01444630

H. Izuka and K. Komagata, Microbiological studies on petroleum and natural gas. 111. Determination of Brevibacterium, Arthrobacter, Micrococcus, Sarcina, Alcaligenes, and Achromobacter isolated from oil-brines in Japan, J. Gen. Appl. Microbiol, vol.11, pp.1-14, 1965.

T. Jaffré, Floristic and Ecological Diversity of the Vegetation on Ultramafic Rocks in New Caledonia. Veg. ultramafic soils, pp.101-107, 1992.

J. Janssen, N. Weyens, S. Croes, B. Beckers, L. Meiresonne et al., Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake, Int. J. Phytoremediation, vol.17, pp.1123-1136, 2015.

E. Jaspers and J. Overmann, Ecological Significance of Microdiversity: Identical 16S rRNA Gene Sequences Can Be Found in Bacteria with Highly Divergent Genomes and Ecophysiologies, Appl. Environ. Microbiol, vol.70, pp.4831-4839, 2004.

,

E. Kazakou, P. G. Dimitrakopoulos, A. J. Baker, R. D. Reeves, and A. Y. Troumbis, Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level, Biol. Rev, pp.495-508, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02024084

M. K. Kim, Y. Kim, H. Kim, S. Kim, T. Yi et al., Curtobacterium ginsengisoli sp. nov., isolated from soil of a ginseng field, Int. J. Syst. Evol. Microbiol, vol.58, pp.2393-2397, 2008.

A. Klonowska, C. Chaintreuil, P. Tisseyre, L. Miché, R. Melkonian et al., Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils, FEMS Microbiol. Ecol, vol.81, pp.618-635, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01506267

K. Komagata and H. Izuka, New species of Brevibacterium Isolated from Rice, J. Agric. Chem. Soc. Japan, vol.38, pp.496-502, 1964.

P. T. Lacava, W. Li, W. L. Araújo, J. L. Azevedo, and J. S. Hartung, The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus, J. Microbiol, vol.45, pp.388-93, 2007.

A. Lagrange, M. Ducousso, P. Jourand, C. Majorel, and H. Amir, New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia, Can. J. Microbiol, vol.57, pp.21-28, 2011.

A. Lagrange, L. L'huillier, and H. Amir, Mycorrhizal status of Cyperaceae from New Caledonian ultramafic soils: Effects of phosphorus availability on arbuscular mycorrhizal colonization of Costularia comosa under field conditions, Mycorrhiza, vol.23, pp.655-661, 2013.

M. Larcher, B. Muller, S. Mantelin, S. Rapior, and J. Cleyet-marel, Early modifications of Brassica napus root system architecture induced by a plant growth-promoting Phyllobacterium strain, New Phytol, vol.160, pp.119-125, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02196429

A. A. Larkin and A. C. Martiny, Microdiversity shapes the traits, niche space, and biogeography of microbial taxa, Environ. Microbiol. Rep, vol.9, pp.55-70, 2017.

I. Larridon, K. Bauters, I. Semmouri, J. Viljoen, C. J. Prychid et al., Molecular phylogenetics of the genus Costularia (Schoeneae, Cyperaceae) reveals multiple distinct evolutionary lineages, Mol. Phylogenet. Evol, vol.126, pp.196-209, 2018.

L. F. Roesch, R. R. Fulthorpe, A. Riva, G. Casella, A. K. Hadwin et al., Pyrosequencing enumerates and contrasts soil microbial diversity, ISME J, vol.1, pp.283-290, 2007.

B. Román-ponce, D. M. Reza-vázquez, S. Gutiérrez-paredes, D. Haro-cruz, M. De et al., Plant Growth-Promoting Traits in Rhizobacteria of Heavy Metal-Resistant Plants and Their Effects on Brassica nigra Seed Germination, Pedosphere, vol.27, pp.511-526, 2017.

G. S. Saddler and P. M. Guimar?es, Curtobacterium, in: Bergey's Manual of Systematics of Archaea and Bacteria, pp.1-14, 2015.

S. Sheu, J. Chou, C. Bontemps, G. N. Elliott, E. Gross et al., Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp, Int. J. Syst. Evol. Microbiol, vol.63, pp.435-441, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01477184

R. D. Stoppel and H. G. Schlegel, Nickel-resistant bacteria from anthropogenically nickelpolluted and naturally nickel-percolated ecosystems, Appl. Environ. Microbiol, vol.61, pp.2276-2285, 1995.

A. V. Sturz, B. R. Christie, B. G. Matheson, and J. Nowak, Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth, Biol. Fertil. Soils, vol.25, pp.13-19, 1997.

A. V. Sturz and B. G. Matheson, Populations of endophytic bacteria which influence hostresistance to Erwinia-induced bacterial soft rot in potato tubers, Plant Soil, vol.184, pp.265-271, 1996.

C. Su, X. Xu, D. Liu, M. Wu, F. Zeng et al., Isolation and characterization of exopolysaccharide with immunomodulatory activity from fermentation broth of Morchella conica, DARU J. Pharm. Sci, vol.21, 2013.

N. Tirry, N. Tahri-joutey, H. Sayel, A. Kouchou, W. Bahafid et al., Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation, J. Genet. Eng. Biotechnol, pp.0-6, 2018.

V. Ventorino, A. Aliberti, V. Faraco, A. Robertiello, S. Giacobbe et al., Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application, Sci. Rep, vol.5, pp.1-13, 2015.

T. A. Vishnivetskaya, S. Kathariou, and J. M. Tiedje, The Exiguobacterium genus: biodiversity and biogeography, Extremophiles, vol.13, pp.541-555, 2009.

A. Wulff, L. L'huillier, C. Véa, and T. Jaffré, Espèces indigènes utilisables en revégétalisation, Les Milieux Sur Substrats Ultramafiques et Leur Restauration. Noumea, pp.231-344, 2010.

K. Yamada and K. Komagata, TAXONOMIC STUDIES ON CORYNEFORM BACTERIA. J. Gen. Appl. Microbiol, vol.18, pp.417-431, 1972.

H. Yao, Y. Gao, G. W. Nicol, C. D. Campbell, J. I. Prosser et al., Links between Ammonia Oxidizer Community Structure, Abundance, and Nitrification Potential in Acidic Soils, 2011.

, Appl. Environ. Microbiol, vol.77, pp.4618-4625

,

Z. Zhang, R. Cai, W. Zhang, Y. Fu, and N. Jiao, A Novel Exopolysaccharide with Metal Adsorption Capacity Produced by a Marine Bacterium Alteromonas sp. JL2810, Mar. Drugs, vol.15, 2017.

L. F. Bidondo, V. Silvani, and R. Colombo, Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host, Soil Biol Biochem, vol.43, pp.1866-1872, 2011.

P. Bonfante and I. Anca, Plants , Mycorrhizal Fungi , and Bacteria : A Network of Interactions, Annu Rev Microbiol, vol.63, pp.363-83, 2009.

H. Borkott and H. Insam, Symbiosis with bacteria enhances the use of chitin by the springtail, Folsomia candida (Collembola), Biol Fertil Soils, vol.9, pp.126-129, 1990.

,

K. U. Brady, A. R. Kruckeberg, . Bradshaw, and . Hd, Evolutionary Ecology of Plant Adaptation to Serpentine Soils, Annu Rev Ecol Evol Syst, vol.36, pp.243-266, 2005.

R. R. Brooks, Serpentine and its vegetation: a multidisciplinary approach, 1987.

M. Brundrett and L. Tedersoo, Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions, New Phytol, vol.221, pp.18-24, 2019.

T. Crossay, Caractérisation taxonomique des champignons mycorhiziens à arbuscules natifs des sols ultramafiques de Nouvelle-Calédonie; analyse de leur synergie permettant l'adaptation des plantes à ces milieux extrêmes, 2018.

T. Crossay, A. Cilia, and Y. Cavaloc, Four new species of arbuscular mycorrhizal fungi (Glomeromycota) associated with endemic plants from ultramafic soils of New Caledonia, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02622578

, Mycol Prog, vol.17, pp.729-744

B. Daniels and H. Skipper, Methods for the recovery and quantitative estimation of propagules from soil. Methods and Principles of Mycorrhizal Research, The American Phytopathological Society, N. C. Sche. pp, pp.29-36, 1982.

P. Doubková and R. Sudová, Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis, Mycorrhiza, vol.24, pp.209-217, 2014.

G. Dubus and I. Becquer, Phosphorus sorption and desorption in oxide rich Ferralsols of New Caledonia, Soil Res, vol.39, pp.403-414, 2001.

H. Etesami, Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects, Ecotoxicol Environ Saf, vol.147, pp.175-191, 2018.

F. Bidondo, L. Colombo, R. Bompadre, and J. , Cultivable bacteria associated with infective propagules of arbuscular mycorrhizal fungi. Implications for mycorrhizal activity, Appl Soil Ecol, vol.105, pp.86-90, 2016.

P. Frey-klett, J. Garbaye, and M. Tarkka, The mycorrhiza helper bacteria revisited, New Phytol, vol.176, pp.22-36, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02667863

T. M. Galal and H. S. Shehata, Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution, Ecol Indic, vol.48, pp.244-251, 2015.

E. Gamalero, G. Lingua, G. Berta, and B. R. Glick, Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress, Can J Microbiol, vol.55, pp.501-514, 2009.

J. Garbaye, Tansley Review No. 76 Helper bacteria: a new dimension to the mycorrhizal symbiosis, New Phytol, vol.128, pp.197-210, 1994.

M. Gonin, S. Gensous, and A. Lagrange, Rhizosphere bacteria of Costularia spp. from ultramafic soils in New Caledonia: diversity, tolerance to extreme edaphic conditions, and role in plant growth and mineral nutrition, Can J Microbiol, vol.59, pp.164-174, 2013.

L. Guentas, S. Gensous, and Y. Cavaloc, Burkholderia novacaledonica sp. nov. and B. ultramafica sp. nov. isolated from roots of Costularia spp. pioneer plants of ultramafic soils in New Caledonia, Syst Appl Microbiol, vol.39, pp.151-159, 2016.

,

P. Huang, L. De-bashan, and T. Crocker, Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo)bacteria on growth promotion of crop plants, Biol Fertil Soils, vol.53, pp.199-208, 2017.

B. Iffis, M. St-arnaud, and M. Hijri, Bacteria associated with arbuscular mycorrhizal fungi within roots of plants growing in a soil highly contaminated with aliphatic and aromatic petroleum hydrocarbons, FEMS Microbiol Lett, vol.358, pp.44-54, 2014.

S. Isnard, L. Huillier, L. Rigault, F. Jaffré, and T. , How did the ultramafic soils shape the flora of the New Caledonian hotspot ?, Plant Soil, vol.403, pp.53-76, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01444630

T. Jaffré, L. Huillier, and L. , Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration, IAC Ed. Noumea, pp.45-103, 2010.

T. Jaffré and L. , Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration, IAC Ed. Noumea, pp.33-44, 2010.

E. Kazakou, P. G. Dimitrakopoulos, and A. Baker, Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level, Biol Rev, pp.495-508, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02024084

N. Koele, M. P. Turpault, and E. E. Hildebrand, Interactions between mycorrhizal fungi and mycorrhizosphere bacteria during mineral weathering: Budget analysis and bacterial quantification, Soil Biol Biochem, vol.41, pp.1935-1942, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02657805

,

R. E. Koske and J. N. Gemma, A modified procedure for staining roots to detect VA mycorrhizas, Mycol Res, vol.92, pp.80195-80204, 1989.

N. Perrier, H. Amir, and C. F. , Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, Mycorrhiza, vol.16, pp.449-458, 2006.

Y. Pillon, E. Lucas, and J. B. Johansen, An Expanded Metrosideros (Myrtaceae) to Include Carpolepis and Tepualia Based on Nuclear Genes, Syst Bot, vol.40, pp.782-790, 2015.

. R-core-team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2018.

G. Selvakumar, R. Krishnamoorthy, K. Kim, and T. Sa, Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls, PLoS One, vol.11, 2016.

G. Selvakumar, C. C. Shagol, and K. Kim, Spore associated bacteria regulates maize root K+/Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis, BMC Plant Biol, vol.18, p.109, 2018.

S. E. Smith and D. Read, , 2008.

S. E. Smith and F. A. Smith, Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales, Annu Rev Plant Biol, vol.62, pp.227-250, 2011.

S. Taktek, M. Trépanier, and P. M. Servin, Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198, Soil Biol Biochem, vol.90, pp.1-9, 2015.

M. T. Tarkka and P. Frey-klett, Mycorrhiza Helper Bacteria, Mycorrhiza, pp.113-132, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02667863

A. Trouvelot, J. Kough, and V. Gianinazi-pearson, Recherche de méthodes d'estimation ayant une signification fonctionnelle, pp.217-221, 1986.

A. Turrini, L. Avio, M. Giovannetti, and M. Agnolucci, Functional Complementarity of Arbuscular Mycorrhizal Fungi and Associated Microbiota: The Challenge of, Translational Research. Front Plant Sci, vol.9, pp.10-13, 2018.

A. Vivas, J. M. Barea, B. Biro, and R. Azcon, Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil, J Appl Microbiol, vol.100, pp.587-598, 2006.

A. Vivas, B. Biró, and J. M. Ruíz-lozano, Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity, Chemosphere, vol.62, pp.1523-1533, 2006.

F. Wang, Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications, Crit Rev Environ Sci Technol, vol.47, pp.1901-1957, 2017.

A. Wulff, L. Huillier, C. Véa, and T. Jaffré, Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration, IAC Ed. Noumea, pp.231-344, 2010.

L. Xie, S. Lehvävirta, and S. Timonen, Species-specific synergistic effects of two plant growth-promoting microbes on green roof plant biomass and photosynthetic efficiency, PLoS One, vol.13, 2018.

A. A. Yousefi, K. Khavazi, and A. A. Moezi, Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth, World Appl Sci J, vol.15, pp.1310-1318, 2011.

R. Abou-shanab, R. A. Ghanem, K. Ghanem, N. Al-kolaibe, and A. , The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils, World J. Microbiol. Biotechnol, vol.24, pp.253-262, 2007.

R. A. Abou-shanab, P. Van-berkum, and J. S. Angle, Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale, Chemosphere, vol.68, pp.360-367, 2007.

R. I. Abou-shanab, T. Delorme, J. S. Angle, R. L. Chaney, K. Ghanem et al., Phenotypic Characterization of Microbes in the Rhizosphere of Alyssum murale, Int. J. Phytoremediation, vol.5, pp.367-379, 2003.

,

W. Achouak, R. Christen, M. Barakat, M. Martel, and T. Heulin, Burkholderia caribensis sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique, Int. J. Syst. Bacteriol, vol.49, pp.787-794, 1999.

D. C. Adriano, Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, 2001.

F. Ahmad, I. Ahmad, and M. S. Khan, Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities, Microbiol. Res, vol.163, pp.173-181, 2008.

T. Aizawa, N. Bao-ve, P. Vijarnsorn, M. Nakajima, and M. Sunairi, Burkholderia acidipaludis sp. nov., aluminium-tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia, Int. J. Syst. Evol. Microbiol, vol.60, pp.2036-2041, 2010.

T. Aizawa, N. B. Ve, K. Kimoto, N. Iwabuchi, H. Sumida et al., Curtobacterium ammoniigenes sp. nov., an ammonia-producing bacterium isolated from plants inhabiting acidic swamps in actual acid sulfate soil areas of Vietnam, Int. J. Syst. Evol. Microbiol, vol.57, pp.1447-1452, 2007.

T. Aizawa, N. B. Ve, M. Nakajima, and M. Sunairi, Burkholderia heleia sp. nov., a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulfate soil areas of Vietnam, Int. J. Syst. Evol. Microbiol, vol.60, pp.1152-1157, 2010.

T. Aizawa, P. Vijarnsorn, M. Nakajima, and M. Sunairi, Burkholderia bannensis sp. nov., an acidneutralizing bacterium isolated from torpedo grass (Panicum repens) growing in highly acidic swamps, Int. J. Syst. Evol. Microbiol, vol.61, pp.1645-1650, 2011.

Y. Alami, W. Achouak, C. Marol, and T. Heulin, Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. Strain isolated from sunflower roots, Appl. Environ. Microbiol, vol.66, pp.3393-3398, 2000.

M. Alexander, Introduction to soil microbiology, 1991.

D. G. Allison, The Biofilm Matrix. Biofouling, vol.19, pp.139-150, 2003.

,

R. N. Ames, Mycorrhiza development in onion in response to inoculation with chitin decomposing actinomycetes, New Phytol, vol.112, pp.423-427, 1989.

R. N. Ames, K. L. Mihara, and H. G. Bayne, Chitin-decomposing actinomycetes associated with a vesicular-arbuscular mycorrhizal fungus from a calcareous soil, New Phytol, vol.111, pp.67-71, 1989.

H. Amir, Y. Cavaloc, A. Laurent, P. Pagand, P. Gunkel et al., Arbuscular mycorrhizal fungi and sewage sludge enhance growth and adaptation of Metrosideros laurifolia on ultramafic soil in New Caledonia: A field experiment, Sci. Total Environ, vol.651, pp.334-343, 2019.

,

H. Amir, M. Ducousso, L. Huillier, and T. Jaffré, Les Milieux Sur Substrats Ultramafiques et Leur Restauration. Noumea, p.10057561, 2010.

H. Amir, D. A. Jasper, and L. K. Abbott, Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils, Mycorrhiza, vol.19, pp.1-6, 2008.

H. Amir, A. Lagrange, N. Hassaïne, and Y. Cavaloc, Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species, Mycorrhiza, vol.23, pp.585-595, 2013.

H. Amir, N. Perrier, F. Rigault, and T. Jaffré, Relationships between Ni-hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic soils, Plant Soil, vol.293, pp.23-35, 2007.

H. Amir and R. Pineau, Relationships between extractable Ni, Co, and other metals and some microbiological characteristics of different ultramafic soils from New Caledonia, 2003.

, Aust. J. Soil Res, vol.41

A. Angus and A. M. Hirsch, Biofilm Formation in the Rhizosphere: Multispecies Interactions and Implications for Plant Growth, Molecular Microbial Ecology of the Rhizosphere, pp.701-712, 2013.

A. A. Angus, C. M. Agapakis, S. Fong, S. Yerrapragada, P. Estrada-de-los-santos et al., Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis, PLoS One, vol.9, 2014.

H. Antoun and J. Kloepper, Plant Growth Promoting Rhizobacteria (PGPR), in: Encyclopedia of Genetics, p.49, 2001.

W. L. Araújo, W. Maccheroni, C. I. Aguilar-vildoso, P. A. Barroso, H. O. Saridakis et al., Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks, Can. J. Microbiol, vol.47, pp.229-236, 2001.

V. Artursson, R. D. Finlay, and J. K. Jansson, Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth, Environ. Microbiol, vol.8, pp.1-10, 2006.

F. Asmelash, T. Bekele, and E. Birhane, The Potential Role of Arbuscular Mycorrhizal Fungi in the Restoration of Degraded Lands, Front. Microbiol, vol.7, pp.1-15, 2016.

O. Ates, Systems Biology of Microbial Exopolysaccharides Production, Front. Bioeng. Biotechnol, vol.3, pp.1-16, 2015.

R. M. Augé, Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis, Mycorrhiza, vol.11, pp.3-42, 2001.

A. Ayangbenro and O. Babalola, A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents, Int. J. Environ. Res. Public Health, vol.14, 2017.

R. Azcón, Selective Interaction between free-living rhizosphere bacteria and vesiculararbuscular mycorrhizal fungi, Soil Biol. Biochem, vol.21, pp.639-644, 1989.

, , pp.90057-90063

R. Azcon, J. M. Barea, and D. S. Hayman, Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate-solubilizing bacteria, Soil Biol. Biochem, vol.8, pp.135-138, 1976.

H. P. Bais, T. L. Weir, L. G. Perry, S. Gilroy, and J. M. Vivanco, the Role of Root Exudates in Rhizosphere Interactions With Plants and Other Organisms, Annu. Rev. Plant Biol, vol.57, pp.233-266, 2006.

A. J. Baker, Accumulators and excluders strategies in the response of plants to heavy metals, J. Plant Nutr, vol.3, pp.643-654, 1981.

A. J. Baker and R. R. Brooks, Terrestrial Higher Plants which Hyperaccumulate Metallic Elements. A Review of Their Distribution, Ecology and Phytochemistry. Biorecovery, vol.1, pp.81-126, 1989.

H. B. Bal, S. Das, T. K. Dangar, and T. K. Adhya, ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants, J. Basic Microbiol, vol.53, pp.972-984, 2013.

J. Barea, R. Azcón, and C. Azcón-aguilar, Mycorrhizosphere interactions to improve plant fitness and soil quality, Antonie Van Leeuwenhoek, vol.81, pp.343-51, 2002.

J. Barriuso, M. T. Pereyra, J. A. García, M. Megías, F. J. Mañero et al., Screening for Putative PGPR to Improve Establishment of the Symbiosis Lactarius deliciosus-Pinus sp, Microb. Ecol, vol.50, pp.82-89, 2005.

R. Barzanti, F. Ozino, M. Bazzicalupo, R. Gabbrielli, F. Galardi et al., Isolation and Characterization of Endophytic Bacteria from the Nickel Hyperaccumulator Plant Alyssum bertolonii, Microb. Ecol, vol.53, pp.306-316, 2007.

Y. Bashan, L. E. De-bashan, B. R. Lopez, M. Moreno, C. Galaviz et al., Environmental restoration with plant growth-promoting bacteria, 11th International Plant Growth-Promoting Rhizobacteria Workshop, 2018.

Y. Bashan, L. E. De-bashan, S. R. Prabhu, and J. Hernandez, Advances in plant growthpromoting bacterial inoculant technology: formulations and practical perspectives (1998-2013), Plant Soil, vol.378, pp.1-33, 2014.

Y. Bashan and G. Holguin, Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation, Trees, vol.16, pp.159-166, 2002.

Y. Bashan and G. Holguin, Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB, Soil Biol. Biochem, vol.30, pp.187-196, 1998.

Y. Bashan, A. Rojas, and M. E. Puente, Improved establishment and development of three cactus species inoculated with Azospirillum brasilense transplanted into disturbed urban desert soil, Can. J. Microbiol, vol.45, pp.441-451, 1999.

S. Basu, R. C. Rabara, and S. Negi, AMF: The future prospect for sustainable agriculture, Physiol. Mol. Plant Pathol, vol.102, pp.36-45, 2018.

F. Battini, C. Cristani, M. Giovannetti, and M. Agnolucci, Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices, Microbiol. Res, vol.183, pp.68-79, 2016.

,

F. Battini, M. Grønlund, M. Agnolucci, M. Giovannetti, and I. Jakobsen, Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria article, Sci. Rep, vol.7, pp.1-11, 2017.

C. Becerra-castro, P. Kidd, M. Kuffner, Á. Prieto-fernández, S. Hann et al., Bacterially Induced Weathering of Ultramafic Rock and Its Implications for Phytoextraction, Appl. Environ. Microbiol, vol.79, pp.5094-5103, 2013.

C. Becerra-castro, P. S. Kidd, Á. Prieto-fernández, N. Weyens, M. Acea et al., Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterisation, Plant Soil, vol.340, pp.413-433, 2011.

C. Becerra-castro, A. Prieto-fernández, V. Álvarez-lopez, C. Monterroso, M. I. Cabello-conejo et al., Nickel Solubilizing Capacity and Characterization of Rhizobacteria Isolated from Hyperaccumulating and Non-Hyperaccumulating Subspecies of Alyssum serpyllifolium, Int. J. Phytoremediation, vol.13, pp.229-244, 2011.

,

S. Bedini, A. Turrini, C. Rigo, E. Argese, and M. Giovannetti, Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice, Soil Biol. Biochem, vol.42, pp.758-765, 2010.

U. Behrendt, A. Ulrich, P. Schumann, D. Naumann, and K. Suzuki, Diversity of grassassociated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; polyphasic characterization of Subtercola pratensis sp. nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov., sp, Int. J. Syst. Evol. Microbiol, vol.52, pp.1441-1454, 2002.

R. L. Berendsen, C. M. Pieterse, and P. A. Bakker, The rhizosphere microbiome and plant health, Trends Plant Sci, vol.17, pp.478-486, 2012.

C. W. Beukes, M. Palmer, P. Manyaka, W. Y. Chan, J. R. Avontuur et al., Genome Data Provides High Support for Generic Boundaries in, Burkholderia Sensu Lato. Front. Microbiol, vol.8, pp.1-12, 2017.

Y. Bi, Y. Zhang, and H. Zou, Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas, Int. J. Coal Sci. Technol, vol.5, pp.47-53, 2018.

V. Bianciotto, S. Andreotti, R. Balestrini, P. Bonfante, and S. Perotto, Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures, Eur. J. Histochem, vol.45, pp.39-49, 2001.

V. Bianciotto, C. Bandi, D. Minerdi, M. Sironi, H. V. Tichy et al., An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria, Appl. Environ. Microbiol, vol.62, pp.3005-3015, 1996.

V. Bianciotto and P. Bonfante, Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria, Antonie Van Leeuwenhoek, vol.81, pp.365-371, 2002.

V. Bianciotto, D. Minerdi, S. Perotto, and P. Bonfante, Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria, Protoplasma, vol.193, pp.123-131, 1996.

V. Bianciotto, E. Lumini, L. Lanfranco, D. Minerdi, P. Bonfante et al., Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae, Appl. Environ. Microbiol, vol.66, pp.4503-4512, 2000.

A. B. Bleecker and H. Kende, Ethylene: A Gaseous Signal Molecule in Plants, Annu. Rev. Cell Dev. Biol, vol.16, pp.1-18, 2000.

R. Boddey, S. Urquiaga, V. Reis, and J. Döbereiner, Biological nitrogen fixation associated with sugar cane, Plant Soil, vol.137, pp.111-117, 1991.

P. Bonfante and I. Anca, Plants , Mycorrhizal Fungi , and Bacteria : A Network of Interactions, Annu. Rev. Microbiol, vol.63, pp.363-83, 2009.

,

L. Bordez, P. Jourand, M. Ducousso, F. Carriconde, Y. Cavaloc et al., Distribution patterns of microbial communities in ultramafic landscape: a metagenetic approach highlights the strong relationships between diversity and environmental traits, Mol. Ecol, vol.25, pp.2258-2272, 2016.

A. Bradshaw, Restoration of mined lands-using natural processes, Ecol. Eng, vol.8, pp.255-269, 1997.

K. U. Brady, A. R. Kruckeberg, and H. D. Bradshaw, Evolutionary Ecology of Plant Adaptation to Serpentine Soils, Annu. Rev. Ecol. Evol. Syst, vol.36, pp.243-266, 2005.

C. O. Bramer, P. Vandamme, L. F. Da-silva, J. Gomez, and A. Steinbuchel, Burkholderia sacchari sp. nov., a polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil, Int. J. Syst. Evol. Microbiol, vol.51, pp.1709-1713, 2001.

S. C. Brink, Unlocking the Secrets of the Rhizosphere, Trends Plant Sci, vol.21, pp.169-170, 2016.

M. R. Bruins, S. Kapil, and F. W. Oehme, Microbial Resistance to Metals in the Environment, Ecotoxicol. Environ. Saf, vol.45, pp.198-207, 2000.

,

M. C. Brundrett, Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis, Plant Soil, vol.320, pp.37-77, 2009.

M. Bucher, Functional biology of plant phosphate uptake at root and mycorrhiza interfaces, New Phytol, vol.173, pp.11-26, 2007.

D. Bulgari, A. Minio, P. Casati, F. Quaglino, M. Delledonne et al., Curtobacterium sp. Genome Sequencing Underlines Plant Growth Promotion-Related Traits, Genome Announc, vol.2, pp.10-11, 2014.

. Burd and G. Dixon, A plant growth-promoting bacterium that decreases nickel toxicity in seedlings, Appl. Environ. Microbiol, vol.64, pp.3663-3671, 1998.

F. P. Carvalho, Agriculture, pesticides, food security and food safety, Environ. Sci. Policy, vol.9, pp.685-692, 2006.

C. Chaintreuil, F. Rigault, L. Moulin, T. Jaffré, J. Fardoux et al., Nickel Resistance Determinants in Bradyrhizobium Strains from Nodules of the Endemic New Caledonia Legume Serianthes calycina, Appl. Environ. Microbiol, vol.73, pp.8018-8022, 2007.

A. B. Chase, P. Arevalo, M. F. Polz, R. Berlemont, and J. B. Martiny, Evidence for Ecological Flexibility in the, Cosmopolitan Genus Curtobacterium. Front. Microbiol, vol.7, pp.1-11, 2016.

A. B. Chase, Z. Gomez-lunar, A. E. Lopez, J. Li, S. D. Allison et al., Emergence of soil bacterial ecotypes along a climate gradient, Environ. Microbiol, vol.20, pp.4112-4126, 2018.

A. B. Chase, U. Karaoz, E. L. Brodie, Z. Gomez-lunar, A. C. Martiny et al., Microdiversity of an Abundant Terrestrial Bacterium Encompasses Extensive Variation in Ecologically Relevant Traits, MBio, vol.8, pp.1-11, 2017.

W. Chen, Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America, Int. J. Syst. Evol. Microbiol, vol.56, pp.1847-1851, 2006.

W. Chen, S. M. De-faria, J. Chou, E. K. James, G. N. Elliott et al., Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia, Int. J. Syst. Evol. Microbiol, vol.58, pp.2174-2179, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01655692

W. Chen, S. M. De-faria, E. K. James, G. N. Elliott, K. Lin et al., Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella, Int. J. Syst. Evol. Microbiol, vol.57, pp.1055-1059, 2007.

,

Y. Chen, Y. Wang, and K. Yeh, Role of root exudates in metal acquisition and tolerance, Curr. Opin. Plant Biol, vol.39, pp.66-72, 2017.

J. F. Cherrier, Reverdissement des terrains miniers en Nouvelle-Calédonie, Bois forêt des Trop, vol.225, pp.5-23, 1990.

A. Chiarucci and A. J. Baker, Advances in the ecology of serpentine soils, Plant Soil, vol.293, pp.1-2, 2007.

C. C. Chien, B. C. Lin, and C. H. Wu, Biofilm formation and heavy metal resistance by an environmental Pseudomonas sp, Biochem. Eng. J, vol.78, pp.132-137, 2013.

,

K. Chojnacka, Biosorption and bioaccumulation -the prospects for practical applications, Environ. Int, vol.36, pp.299-307, 2010.

T. Coenye, S. Laevens, A. Willems, M. Ohlen, W. Hannant et al., Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples, Int. J. Syst. Evol. Microbiol, vol.51, pp.1099-1107, 2001.

T. Coenye and P. Vandamme, Diversity and significance of Burkholderia species occupying diverse ecological niches, Environ. Microbiol, vol.5, pp.719-729, 2003.

F. M. Cohan, Towards a conceptual and operational union of bacterial systematics, ecology, and evolution, Philos. Trans. R. Soc. B Biol. Sci, vol.361, 1985.

M. D. Collins, E. Farrow, M. Goodfellow, and D. E. Minnikin, Brevibacterium casei sp. nov. and Brevibacterium epidermidis sp, nov. Syst. Appl. Microbiol, vol.4, pp.388-395, 1983.

S. Compant, C. Clément, and A. Sessitsch, Plant growth-promoting bacteria in the rhizoand endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization, Soil Biol. Biochem, vol.42, pp.669-678, 2010.

,

S. Compant, J. Nowak, T. Coenye, C. Clément, and E. Ait-barka, Diversity and occurrence of Burkholderia spp. in the natural environment, FEMS Microbiol. Rev, vol.32, pp.607-626, 2008.

O. Y. Costa, J. M. Raaijmakers, and E. E. Kuramae, Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation, Front. Microbiol, vol.9, pp.1-14, 2018.

J. W. Costerton, Introduction to biofilm, Int. J. Antimicrob. Agents, vol.11, pp.217-221, 1999.

T. Crossay, Liens entre diversité et fonctions chez les champignons mycorhiziens à arbuscules des sols ultramafiques de Nouvelle -Calédonie . Applications à la « restauration écologique, 2018.

T. Crossay, A. Cilia, Y. Cavaloc, H. Amir, and D. Redecker, Four new species of arbuscular mycorrhizal fungi (Glomeromycota) associated with endemic plants from ultramafic soils of New Caledonia, Mycol. Prog, vol.17, pp.729-744, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02622578

,

T. Danhorn and C. Fuqua, Biofilm Formation by Plant-Associated Bacteria, Annu. Rev. Microbiol, vol.61, pp.401-422, 2007.

L. E. De-bashan, J. P. Hernandez, and Y. Bashan, The potential contribution of plant growthpromoting bacteria to reduce environmental degradation -A comprehensive evaluation, 2012.

, Appl. Soil Ecol, vol.61, pp.171-189

D. Val, C. Barea, J. M. Azcón-aguilar, and C. , Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils, Appl. Environ. Microbiol, vol.65, pp.718-741, 1999.

E. Dell'amico, L. Cavalca, and V. Andreoni, Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria, FEMS Microbiol. Ecol, vol.52, pp.153-162, 2005.

J. Demenois, F. Carriconde, F. Rey, and A. Stokes, Tropical plant communities modify soil aggregate stability along a successional vegetation gradient on a Ferralsol, Ecol. Eng, vol.109, pp.161-168, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01918110

J. Demenois, F. Rey, A. Stokes, and F. Carriconde, Does arbuscular and ectomycorrhizal fungal inoculation improve soil aggregate stability? A case study on three tropical species growing in ultramafic Ferralsols, Pedobiologia (Jena), vol.64, pp.8-14, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608922

,

Y. Dessaux, C. Grandclément, and D. Faure, Engineering the Rhizosphere, Trends Plant Sci, vol.21, pp.266-278, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01443849

A. P. Dobritsa and M. Samadpour, Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia, Int. J. Syst. Evol. Microbiol, vol.66, pp.2836-2846, 2016.

F. Donot, A. Fontana, J. C. Baccou, and S. Schorr-galindo, Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction, Carbohydr. Polym, vol.87, pp.951-962, 2012.

M. N. Dourado, M. R. Franco, L. P. Peters, P. F. Martins, L. A. Souza et al., Antioxidant enzymes activities of Burkholderia spp. strains-oxidative responses to Ni toxicity, Environ. Sci. Pollut. Res, vol.22, 2015.

J. M. Dunleavy, Curtobacterium plantarum sp. nov. is ubiquitous in plant leaves and is seed transmitted in soybean and corn, Int. J. Syst. Bacteriol, vol.39, pp.240-249, 1989.

R. Duponnois and J. Garbaye, Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis: effects in aseptic and in glasshouse conditions, Ann. des Sci. For, vol.48, pp.239-251, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00882751

G. Echevarria, S. T. Massoura, T. Sterckeman, T. Becquer, C. Schwartz et al., Assesment and control of the bioavailability of Nickel in soils, Environ. Toxicol. Chem, vol.25, p.643, 2006.

G. Echevarria, J. Morel, J. C. Fardeau, and E. Leclerc-cessac, Assessment of phytoavailability of nickel in soils, J. Environ. Qual, vol.27, pp.1064-1070, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02690333

T. Emam, Local soil, but not commercial AMF inoculum, increases native and nonnative grass growth at a mine restoration site, Restor. Ecol, vol.24, pp.35-44, 2016.

P. Estrada-de-los-santos, M. Palmer, B. Chávez-ramírez, C. Beukes, E. Steenkamp et al., Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae, Genes (Basel), vol.9, p.389, 2018.

H. Etesami, Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects, Ecotoxicol. Environ. Saf, vol.147, pp.175-191, 2018.

L. I. Evtushenko and M. Takeuchi, The Family Microbacteriaceae, The Prokaryotes, pp.1020-1098, 2006.

X. Fan, H. Hu, G. Huang, F. Huang, Y. Li et al., Soil inoculation with Burkholderia sp. LD-11 has positive effect on water-use efficiency in inbred lines of maize, Plant Soil, vol.390, pp.337-349, 2015.

A. S. Ferreira, Insights into the role of extracellular polysaccharides in Burkholderia adaptation to different environments, Front. Cell. Infect. Microbiol, vol.1, pp.1-9, 2011.

M. S. Fitzsimons and R. M. Miller, Serpentine soil has little influence on the root-associated microbial community composition of the serpentine tolerant grass species Avenula sulcata, Plant Soil, vol.330, pp.393-405, 2010.

B. Fogliani, De la connaissance physiologique des Cunoniaceae endémiques de la Nouvelle-Calédonie, à la recherche des caractéristiques physico-chimiques et biologiques de leurs substances bioactives d' intérêt 403, 2002.

J. Fortin, C. Plenchette, and Y. Piché, Les mycorhizes : La nouvelle révolution verte, Multimonde, 2008.

N. Fraysse, F. Couderc, and V. Poinsot, Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis, Eur. J. Biochem, vol.270, pp.1365-1380, 2003.

F. Freitas, V. D. Alves, and M. A. Reis, Advances in bacterial exopolysaccharides: from production to biotechnological applications, Trends Biotechnol, vol.29, pp.388-398, 2011.

P. Frey-klett, J. Garbaye, and M. Tarkka, The mycorrhiza helper bacteria revisited, New Phytol, vol.176, pp.22-36, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02667863

C. Galaviz, B. R. Lopez, L. E. De-bashan, A. M. Hirsch, M. Maymon et al., Root growth improvement of mesquite seedlings and bacterial rhizosphere and soil community changes are induced by inoculation with plant growth-promoting bacteria and promote restoration of eroded desert soil, L. Degrad. Dev, vol.29, pp.1453-1466, 2018.

E. Gamalero, G. Lingua, G. Berta, and B. R. Glick, Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress, Can. J. Microbiol, vol.55, pp.501-514, 2009.

J. Garbaye, Les bactéries auxiliaires de la mycorhization: une nouvelle dimension de la symbiose mycorhizienne, Acta Bot. Gall, vol.141, pp.517-521, 1994.

,

J. Garbaye, Tansley Review No. 76 Helper bacteria: a new dimension to the mycorrhizal symbiosis, New Phytol, vol.128, pp.197-210, 1994.

A. Gaur and A. Adholeya, Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils, Curr. Sci, vol.86, pp.528-534, 2004.

,

F. Gavini, J. Mergaert, A. Beji, M. Izard, D. Kersters et al., Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and Description of Pantoea dispersa sp. nov, Int. J. Syst. Bacteriol, vol.39, pp.337-345, 1989.

S. Gensous, Les champignons mycorhiziens à arbuscules des sols ultramafiques de Nouvelle-Calédonie, 2014.

,

P. Giovanella, L. Cabral, A. P. Costa, F. A. De-oliveira-camargo, C. Gianello et al., Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals, Ecotoxicol. Environ. Saf, vol.140, pp.162-169, 2017.

B. R. Glick, Bacteria with ACC deaminase can promote plant growth and help to feed the world, Microbiol. Res, vol.169, pp.30-39, 2014.

B. R. Glick, Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica (Cairo), vol.2012, pp.1-15, 2012.

B. R. Glick, Phytoremediation: synergistic use of plants and bacteria to clean up the environment, Biotechnol. Adv, vol.21, issue.03, pp.55-62, 2003.

B. R. Glick, Z. Cheng, J. Czarny, and J. Duan, Promotion of plant growth by ACC deaminase-producing soil bacteria, Eur. J. Plant Pathol, vol.119, pp.329-339, 2007.

S. C. Gonçalves, M. A. Martins-loução, and H. Freitas, Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils, Mycorrhiza, vol.19, pp.221-230, 2009.

M. Gonin, S. Gensous, A. Lagrange, M. Ducousso, H. Amir et al., Rhizosphere bacteria of Costularia spp. from ultramafic soils in New Caledonia: diversity, tolerance to extreme edaphic conditions, and role in plant growth and mineral nutrition, Can. J. Microbiol, vol.59, pp.164-174, 2013.

H. Gonzalez and T. E. Jensen, Nickel sequestering by polyphosphate bodies in Staphylococcus aureus, Microbios, vol.93, pp.179-85, 1998.

J. Goris, Classification of the biphenyl-and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov, Int. J. Syst. Evol. Microbiol, vol.54, pp.1677-1681, 2004.

J. Goris, W. Dejonghe, E. Falsen, E. De-clerck, B. Geeraerts et al., Diversity of Transconjugants that Acquired Plasmid pJP4 or pEMT1 after Inoculation of a Donor Strain in the A-and B-horizon of an Agricultural Soil and Description of Burkholderia hospita sp. nov. and Burkholderia terricola sp, nov. Syst. Appl. Microbiol, vol.25, pp.340-352, 2002.

S. Gouda, R. G. Kerry, G. Das, S. Paramithiotis, H. S. Shin et al., Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture, 2018.

, Microbiol. Res, vol.206, pp.131-140

V. Gourmelon, L. Maggia, J. R. Powell, S. Gigante, S. Hortal et al., Environmental and Geographical Factors Structure Soil Microbial Diversity in New Caledonian Ultramafic Substrates: A Metagenomic Approach, PLoS One, vol.11, 2016.

C. J. Grandlic, M. O. Mendez, J. Chorover, B. Machado, and R. M. Maier, Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings, Environ. Sci. Technol, vol.42, pp.2079-2084, 2008.

E. J. Gray and D. L. Smith, Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes, Soil Biol. Biochem, vol.37, pp.395-412, 2005.

L. Guentas, S. Gensous, Y. Cavaloc, M. Ducousso, H. Amir et al., Burkholderia novacaledonica sp. nov. and B. ultramafica sp. nov. isolated from roots of Costularia spp. pioneer plants of ultramafic soils in New Caledonia, Syst. Appl. Microbiol, vol.39, pp.151-159, 2016.

,

J. K. Guo, Y. Z. Ding, R. W. Feng, R. G. Wang, Y. M. Xu et al., Burkholderia metalliresistens sp. nov., a multiple metal-resistant and phosphatesolubilising species isolated from heavy metal-polluted soil in Southeast China, Int. J. Gen. Mol. Microbiol, vol.107, pp.1591-1598, 2015.

,

P. Gupta and B. Diwan, Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies, Biotechnol. Reports, vol.13, pp.58-71, 2017.

A. Hartmann, M. Rothballer, and M. Schmid, Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research, Plant Soil, vol.312, pp.7-14, 2008.

R. Hayat, S. Ali, U. Amara, R. Khalid, and I. Ahmed, Soil beneficial bacteria and their role in plant growth promotion: a review, Ann. Microbiol, vol.60, pp.579-598, 2010.

F. Hedges, A bacterial wilt of the bean cause by bacterium flaccumfaciens nov. sp. Science (80-. ), vol.55, pp.433-434, 1922.

A. Herrera, M. Héry, J. E. Stach, T. Jaffré, P. Normand et al., Species richness and phylogenetic diversity comparisons of soil microbial communities affected by nickel-mining and revegetation efforts in New Caledonia, Eur. J. Soil Biol, vol.43, pp.130-139, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00155909

M. Hery, S. Nazaret, T. Jaffré, P. Normand, and E. Navarro, Adaptation to nickel spiking of bacterial communities in neocaledonian soils, Environ. Microbiol, vol.5, pp.3-12, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02573508

N. A. Hopkins, Mycorrhizae in a California serpentine grassland community, Can. J. Bot, vol.65, pp.484-487, 1987.

G. H. Huang, H. H. Tian, H. Y. Liu, X. W. Fan, Y. Liang et al., Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11, Int. J. Phytoremediation, vol.15, pp.991-1009, 2013.

R. Idris, R. Trifonova, M. Puschenreiter, W. W. Wenzel, and A. Sessitsch, Bacterial Communities Associated with Flowering Plants of the Ni Hyperaccumulator Thlaspi goesingense, Appl. Environ. Microbiol, vol.70, pp.2667-2677, 2004.

,

S. Isnard, L. L'huillier, F. Rigault, and T. Jaffré, How did the ultramafic soils shape the flora of the New Caledonian hotspot ?, Plant Soil, vol.403, pp.53-76, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01444630

H. Izumi, J. W. Cairney, K. Killham, E. Moore, I. J. Alexander et al., Bacteria associated with ectomycorrhizas of slash pine (Pinus elliottii) in south-eastern Queensland, Australia. FEMS Microbiol. Lett, vol.282, pp.196-204, 2008.

,

T. Jaffré, Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en, 1980.

T. Jaffré, R. R. Brooks, J. Lee, and R. D. Reeves, Sebertia acuminata: A Hyperaccumulator of Nickel from New Caledonia. Science (80-. ), vol.193, pp.579-580, 1976.

T. Jaffré, L. L'huillier, L. Huillier, and T. Jaffré, Conditions de milieu des terrains miniers, Les Milieux Sur Substrats Ultramafiques et Leur Restauration. Noumea, pp.33-44, 2010.

T. Jaffré, L. L'huillier, L. Huillier, and T. Jaffré, Les Milieux Sur Substrats Ultramafiques et Leur Restauration. Noumea, pp.45-103, 2010.

T. Jaffré and M. Latham, Recherches sur les possibilités d'implantation végétale sur déblais miniers -Rapport final, Nouméa : ORSTOM, 18 p. multigr, 1976.

T. Jaffré and M. Latham, Contribution à l'étude des relations sol-végétation sur un massif de roches ultrabasiques de la côte, 1974.

, Adansonia.Série, vol.2, issue.14, pp.311-336

T. Jaffré and B. Pelletier, Plantes de Nouvelle Calédonie permettant de revegetaliser des sites miniers, SLN (NCL), vol.114, 1992.

T. Jaffré, F. Rigault, G. Dagostini, J. Tinel-fambart, A. Wulff et al., Input of the Different Vegetation Units To the Richness and Endemicity of the New Caledonian Flora, Proceedings of the 11th Pacific Science Inter-Congress, vol.11, pp.1-4, 2004.

T. Jaffré, F. Rigault, and J. Sarrailh, Ecologie des milieux sur roches ultramafiques et sur sols métallifères : actes de la deuxième conférence internationale sur l'écologie des milieux serpentiniques, Documents Scientifiques et Techniques -ORSTOM : III ; 2). Conférence Internationale sur l'Ecologie des Milieux Serpentiniques = International Conference on Serpentine Ecology, vol.2, pp.285-288, 1997.

T. Jaffré and J. M. Veillon, Les principales formations végétales autochtones en Nouvelle-Calédonie : caractéristiques, vulnérabilité, mesures de sauvegarde, Biodiversité. Rapports de Synthèse, vol.2, issue.2, 1994.

J. M. Janse, Les endophytes radicaux de quelques plantes javanaises, Ann. du Jard. Bot. Buitenzorg, vol.14, pp.53-212, 1896.

A. Javaid, Biomanagement of Metal-Contaminated Soils, Environmental Pollution, 2011.

C. Jiang, . Yu, X. Sheng, M. Qian, Q. Wang et al., Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metalpolluted soil, Chemosphere, vol.72, pp.157-164, 2008.

,

J. L. Johnson, Use of Nucleic-Acid Homologies in the Taxonomy of Anaerobic Bacteria, Int. J. Syst. Bacteriol, vol.23, pp.308-315, 1973.

P. Jourand, M. Ducousso, C. Loulergue-majorel, L. Hannibal, S. Santoni et al., Ultramafic soils from New Caledonia structure Pisolithus albus in ecotype, FEMS Microbiol. Ecol, vol.72, pp.238-249, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02665431

F. Kamilova, L. V. Kravchenko, A. I. Shaposhnikov, T. Azarova, N. Makarova et al., Organic Acids, Sugars, and L-Tryptophane in Exudates of Vegetables Growing on Stonewool and Their Effects on Activities of Rhizosphere Bacteria, Mol. Plant-Microbe Interact, vol.19, pp.250-256, 2006.

S. Kandel, P. Joubert, and S. Doty, Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms 5, 77, 2017.

S. L. Kandel, A. Firrincieli, P. M. Joubert, P. A. Okubara, N. D. Leston et al., An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes, Front. Microbiol, vol.8, pp.1-16, 2017.

V. Karandashov and M. Bucher, Symbiotic phosphate transport in arbuscular mycorrhizas, Trends Plant Sci, vol.10, pp.22-29, 2005.

M. Kaushal and S. P. Wani, Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress, Agric. Ecosyst. Environ, vol.231, pp.68-78, 2016.

E. Kazakou, P. G. Dimitrakopoulos, A. J. Baker, R. D. Reeves, and A. Y. Troumbis, Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level, Biol. Rev, pp.495-508, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02024084

C. J. Keys, D. J. Dare, H. Sutton, G. Wells, M. Lunt et al., Compilation of a MALDI-TOF mass spectral database for the rapid screening and characterisation of bacteria implicated in human infectious diseases, Infect. Genet. Evol, vol.4, pp.221-242, 2004.

A. G. Khan, Microbial Dynamics in the Mycorrhizosphere with Special Reference to Arbuscular Mycorrhizae, 2008.

W. Kgaa and G. , , pp.245-256

A. G. Khan, Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation, J. Trace Elem. Med. Biol, vol.18, pp.355-64, 2005.

H. Kim, M. Park, H. Yang, D. An, H. Jin et al., Burkholderia ginsengisoli sp. nov., a beta-glucosidase-producing bacterium isolated from soil of a ginseng field, Int. J. Syst. Evol. Microbiol, vol.56, pp.2529-2533, 2006.

,

H. Kim, D. Park, H. Oh, K. H. Lee, D. Chung et al., Gryllotalpicola gen. nov., with descriptions of Gryllotalpicola koreensis sp. nov., Gryllotalpicola daejeonensis sp. nov. and Gryllotalpicola kribbensis sp. nov. from the gut of the African mole cricket, Gryllotalpa africana, and reclassification of Curtobacterium ginsengisoli as Gryllotalpicola ginsengisoli com. nov, Int. J. Syst. Evol. Microbiol, vol.62, pp.2363-2370, 2012.

M. K. Kim, Y. Kim, H. Kim, S. Kim, T. Yi et al., Curtobacterium ginsengisoli sp. nov., isolated from soil of a ginseng field, Int. J. Syst. Evol. Microbiol, vol.58, pp.2393-2397, 2008.

S. Kjelleberg and S. Molin, Is there a role for quorum sensing signals in bacterial biofilms ? Curr. Opin. Microbi 254-258, 2002.

J. W. Kloepper, Origins and progress of PGPR research, 11th International Plant Growth-Promoting Rhizobacteria Workshop, 2018.

J. W. Kloepper and M. N. Schrotch, Development of a Powder Formulation of Rhizobacteria for Inoculation of Potato Seed Pieces, Phytopathology, vol.71, 1981.

J. W. Kloepper and M. N. Schroth, Plant growth-promoting rhizobacteria on radishes, IVth International Conference Plant Pathogenic Bacteria, pp.879-882, 1978.

A. Klonowska, C. Chaintreuil, P. Tisseyre, L. Miché, R. Melkonian et al., Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils, FEMS Microbiol. Ecol, vol.81, pp.618-635, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01506267

S. Koechler, J. Farasin, J. Cleiss-arnold, and F. Arsène-ploetze, Toxic metal resistance in biofilms: diversity of microbial responses and their evolution, Res. Microbiol, vol.166, pp.764-773, 2015.

K. Komagata and H. Izuka, New species of Brevibacterium Isolated from Rice, J. Agric. Chem. Soc. Japan, vol.38, pp.496-502, 1964.

A. R. Kruckeberg, An Essay: The Stimulus of Unusual Geologies for Plant Speciation, Syst. Bot, vol.11, pp.455-463, 1986.

R. M. Kucey, Increased Phosphorus Uptake by Wheat and Field Beans Inoculated with a Phosphorus-Solubilizing Penicillium bilaji Strain and with Vesicular-Arbuscular Mycorrhizal Fungi, Appl. Environ. Microbiol, vol.53, pp.2699-703, 1987.

M. Kuffner, S. De-maria, M. Puschenreiter, K. Fallmann, G. Wieshammer et al., Culturable bacteria from Zn-and Cdaccumulating Salix caprea with differential effects on plant growth and heavy metal availability, J. Appl. Microbiol, vol.108, pp.1471-1484, 2010.

L. L'huillier and S. Edighoffer, Extractability of nickel and its concentration in cultivated plants in Ni rich ultramafic soils of New Caledonia, Plant Soil, vol.186, pp.255-264, 1996.

L. L'huillier, T. Jaffré, L. Huillier, and T. Jaffré, L'exploitation des minerais de Nickel en Nouvelle-Calédonie, Les Milieux Sur Substrats Ultramafiques et Leur Restauration. Noumea, pp.129-145, 2010.

L. L'huillier, A. Wulff, G. Gâteblé, B. Fogliani, C. Zongo et al., La restauration des sites miniers, Les Milieux Sur Substrats Ultramafiques et Leur Restauration. Noumea, pp.147-230, 2010.

A. Lagrange, Etudes écologique et microbiologique des espèces du genre Costularia (Cyperaceae), pionnières des sols ultramafiques en nouvelle-calédonie : perspectives d'application à la restauration écologique, 2009.

A. Lagrange, M. Ducousso, P. Jourand, C. Majorel, and H. Amir, New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia, Can. J. Microbiol, vol.57, pp.21-28, 2011.

A. Lagrange, L. L'huillier, and H. Amir, Mycorrhizal status of Cyperaceae from New Caledonian ultramafic soils: Effects of phosphorus availability on arbuscular mycorrhizal colonization of Costularia comosa under field conditions, Mycorrhiza, vol.23, pp.655-661, 2013.

H. Lambers, M. W. Shane, M. D. Cramer, S. J. Pearse, and E. J. Veneklaas, Root Structure and Functioning for Efficient Acquisition of Phosphorus: Matching Morphological and Physiological Traits, Ann. Bot, vol.98, pp.693-713, 2006.

B. B. Lamont, Structure, ecology and physiology of root clusters -a review, Plant Soil, vol.248, pp.1-19, 2003.

B. B. Lamont, The biology of Dauciform roots in the sedge Cyathochaete avenacea, New Phytol, vol.73, pp.985-996, 1974.

B. B. Lamont, M. Pérez-fernández, and J. Rodríguez-sánchez, Soil bacteria hold the key to root cluster formation, New Phytol, vol.206, pp.1156-1162, 2015.

I. Larridon, K. Bauters, I. Semmouri, J. Viljoen, C. J. Prychid et al., Molecular phylogenetics of the genus Costularia (Schoeneae, Cyperaceae) reveals multiple distinct evolutionary lineages, Mol. Phylogenet. Evol, vol.126, pp.196-209, 2018.

I. Larridon, G. A. Verboom, and A. M. Muasya, Revised delimitation of the genus Tetraria, nom. cons. prop. (Cyperaceae, tribe Schoeneae, Tricostularia clade), South African J. Bot, vol.118, pp.18-22, 2018.

M. Ledin, Accumulation of metals by microorganisms -processes and importance for soil systems, Earth-Science Rev, vol.51, pp.1-31, 2000.

S. Lerat, L. Lapointe, S. Gutjahr, Y. Piche, and H. Vierheilig, Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent, New Phytol, vol.157, pp.589-595, 2003.

C. Leyval, K. Turnau, and K. Haselwandter, Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects, Mycorrhiza, vol.7, pp.139-153, 1997.

J. H. Lim, S. Baek, and S. Lee, Burkholderia sediminicola sp. nov., isolated from freshwater sediment, Int. J. Syst. Evol. Microbiol, vol.58, pp.565-569, 2008.

,

R. G. Linderman, Mycorrhizal interactions in the rhizosphere, in: The Rhizosphere and Plant Growth, pp.343-348, 1991.

Y. Liu, J. Guo, N. Salam, L. Li, Y. Zhang et al., Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny, distribution and screening for industrially important traits, 0209.

L. Long, Q. Lin, Q. Yao, and H. Zhu, Population and function analysis of cultivable bacteria associated with spores of arbuscular mycorrhizal fungus Gigaspora margarita, 2017.

, Biotech, vol.7, pp.4-9

L. Lopes-santos, D. B. Castro, M. Ferreira-tonin, D. B. Corrêa, B. S. Weir et al., Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov, Antonie Van Leeuwenhoek, vol.110, pp.727-736, 2017.

,

J. López-bucio, A. Cruz-ram??ez, and L. Herrera-estrella, The role of nutrient availability in regulating root architecture, Curr. Opin. Plant Biol, vol.6, pp.35-44, 2003.

G. Losfeld, V. Escande, T. Jaffré, L. L'huillier, and C. Grison, The chemical exploitation of nickel phytoextraction: An environmental, ecologic and economic opportunity for New Caledonia, Chemosphere, vol.89, pp.907-910, 2012.

,

G. Losfeld, L. L'huillier, B. Fogliani, T. Jaffré, and C. Grison, Mining in New Caledonia: environmental stakes and restoration opportunities, Environ. Sci. Pollut. Res, vol.22, pp.5592-5607, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01898232

G. Losfeld, R. Mathieu, L. L'huillier, B. Fogliani, T. Jaffré et al., Phytoextraction from mine spoils: insights from New Caledonia, Environ. Sci. Pollut. Res, vol.22, pp.5608-5619, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01898277

P. Lu, L. Zheng, J. Sun, H. Liu, S. Li et al., Burkholderia zhejiangensis sp. nov., a methyl-parathion-degrading bacterium isolated from a wastewater-treatment system, Int. J. Syst. Evol. Microbiol, vol.62, pp.1337-1341, 2012.

S. Luçon, F. Marion, J. Niel, and B. Pelletier, Réhabilitation des sites miniers sur roches ultramafiques en Nouvelle-Calédonie. Ecol. des milieux sur roches ultramafiques sur sols métallifères, pp.297-303, 1994.

M. Lucy, E. Reed, R. Glick, and B. , Applications of free living plant growth-promoting rhizobacteria, Antonie Van Leeuwenhoek, vol.86, pp.1-25, 2004.

,

B. Lugtenberg and F. Kamilova, Plant-Growth-Promoting Rhizobacteria, Annu. Rev. Microbiol, vol.63, pp.541-556, 2009.

Y. Ma, R. S. Oliveira, H. Freitas, and C. Zhang, Biochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation. Front, Plant Sci, vol.7, pp.1-19, 2016.

Y. Ma, M. Rajkumar, and H. Freitas, Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp, Chemosphere, vol.75, pp.719-725, 2009.

,

Y. Ma, M. Rajkumar, I. Rocha, R. S. Oliveira, and H. Freitas, Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils, Front. Plant Sci, vol.5, pp.1-13, 2015.

,

M. Madhaiyan, S. Poonguzhali, and T. Sa, Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.), Chemosphere, vol.69, pp.220-228, 2007.

,

F. Masoumi, E. Khadivinia, L. Alidoust, Z. Mansourinejad, S. Shahryari et al., Nickel and lead biosorption by Curtobacterium sp. FM01, an indigenous bacterium isolated from farmland soils of northeast Iran, J. Environ. Chem. Eng, vol.4, pp.950-957, 2016.

K. A. Mattos, C. Jones, N. Heise, J. O. Previato, and L. Mendonça-previato, Structure of an acidic exopolysaccharide produced by the diazotrophic endophytic bacterium Burkholderia brasiliensis, Eur. J. Biochem, vol.268, pp.3174-3179, 2001.

,

M. Mccully, The rhizosphere: the key functional unit in plant/soil/microbial interactions in the field. Implications for the understanding of allelopathic effects, Proceedings of the 4th World Congress on Allelopathy, pp.1-8, 2005.

A. Mengoni, R. Barzanti, C. Gonnelli, R. Gabbrielli, and M. Bazzicalupo, Characterization of nickel-resistant bacteria isolated from serpentine soil, Environ. Microbiol, vol.3, pp.691-698, 2001.

A. Mengoni, E. Grassi, R. Barzanti, E. G. Biondi, C. Gonnelli et al., Genetic Diversity of Bacterial Communities of Serpentine Soil and of Rhizosphere of the Nickel-Hyperaccumulator Plant Alyssum bertolonii, Microb. Ecol, vol.48, pp.209-217, 2004.

A. Mengoni, H. Schat, and J. Vangronsveld, Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora, Plant Soil, vol.331, pp.5-16, 2010.

S. Mercky, Rhizobactéries natives de Nouvelle-Calédonie: Réhabilitation des sites miniers dégradés, Bois Forêts Des Trop, vol.262, pp.80-83, 1999.

S. Mercky, Rhizobactéries natives de Nouvelle-Calédonie, promotrices de la croissance des plantes, 1998.

M. Mergeay, D. Nies, H. G. Schlegel, J. Gerits, P. Charles et al., Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals, J. Bacteriol, vol.162, pp.328-362, 1985.

J. R. Meyer and R. G. Linderman, Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol. Biochem, vol.18, issue.86, pp.90025-90033, 1986.

S. H. Miller, P. Browne, C. Prigent-combaret, E. Combes-meynet, J. P. Morrissey et al., Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species, Environ. Microbiol. Rep, vol.2, pp.403-411, 2009.
URL : https://hal.archives-ouvertes.fr/halsde-00525643

,

D. Minerdi, V. Bianciotto, and P. Bonfante, Endosymbiotic bacteria in mycorrhizal fungi: from their morphology to genomic sequences, Plant Soil, vol.244, pp.211-219, 2002.

M. Miransari, Interactions between arbuscular mycorrhizal fungi and soil bacteria, Appl. Microbiol. Biotechnol, vol.89, pp.917-930, 2011.

J. Mishra, R. Singh, and N. K. Arora, Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms, Front. Microbiol, vol.8, pp.1-7, 2017.

P. Morat, T. Jaffré, F. Tronchet, J. Munzinger, Y. Pillon et al., Le référentiel taxonomique Florical et les caractéristiques de la flore vasculaire indigène de la, Adansonia, vol.34, pp.179-221, 2012.

K. A. Mosa, I. Saadoun, K. Kumar, M. Helmy, and O. P. Dhankher, Potential Biotechnological Strategies for the Cleanup of, Heavy Metals and Metalloids. Front. Plant Sci, vol.7, pp.1-14, 2016.

A. M. Moser, C. A. Petersen, J. A. D'allura, and D. Southworth, Comparison of ectomycorrhizas of Quercus garryana (Fagaceae) on serpentine and non-serpentine soils in southwestern Oregon, Am. J. Bot, vol.92, pp.224-230, 2005.

B. Mosse, The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular-arbuscular mycorrhiza, Trans. Br. Mycol. Soc, vol.42, pp.80033-80041, 1959.

L. Moulin, A. Munive, B. Dreyfus, and C. Boivin-masson, Erratum: Nodulation of legumes by members of the ?-subclass of Proteobacteria, Nature, vol.412, pp.926-926, 2001.

A. L. Muler, R. S. Oliveira, H. Lambers, and E. J. Veneklaas, Does cluster-root activity benefit nutrient uptake and growth of co-existing species ?, Oecologia, vol.174, pp.23-31, 2014.

K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn et al., Specific Enzymatic Amplification of DNA In Vitro: The Polymerase Chain Reaction, Cold Spring Harb. Symp. Quant. Biol, vol.51, pp.263-273, 1986.

N. Myers, Biodiversity Hotspots Revisited. Bioscience, vol.53, pp.916-917, 2003.

N. Myers, R. A. Mittermeier, C. G. Mittermeier, G. A. Da-fonseca, and J. Kent, Biodiversity hotspots for conservation priorities, Nature, vol.403, pp.853-858, 2000.

M. Nacef, M. Chevalier, S. Chollet, D. Drider, and C. Flahaut, MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a French cheese: The Maroilles, Int. J. Food Microbiol, vol.247, pp.2-8, 2017.

,

H. Naseem, M. Ahsan, M. A. Shahid, and N. Khan, Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance, J. Basic Microbiol, vol.58, pp.1009-1022, 2018.

E. Navarro, T. Jaffré, D. Gauthier, F. Gourbiere, G. Rinaudo et al., Distribution of Gymnostoma spp. microsymbiotic Frankia strains in New Caledonia is related to soil type and to host-plant species, Mol. Ecol, vol.8, pp.1781-1788, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02573536

L. Nielsen, X. Li, and L. J. Halverson, Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions, Environ. Microbiol, vol.13, pp.1342-1356, 2011.

D. H. Nies, Efflux-mediated heavy metal resistance in prokaryotes, FEMS Microbiol. Rev, vol.27, pp.313-339, 2003.

D. H. Nies, Microbial heavy-metal resistance, Appl. Microbiol. Biotechnol, vol.51, pp.730-750, 1999.

D. H. Nies, Resistance to cadmium, cobalt, zinc, and nickel in microbes, Plasmid, vol.27, pp.17-28, 1992.

P. N. Nkrumah, A. J. Baker, R. L. Chaney, P. D. Erskine, G. Echevarria et al., Current status and challenges in developing nickel phytomining: an agronomic perspective, Plant Soil, vol.406, pp.55-69, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01308495

N. Nocelli, P. Bogino, E. Banchio, and W. Giordano, Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia. Materials (Basel), vol.9, 2016.

R. O'dell and N. Rajakaruna, Intraspecific Variation, Adaptation, and Evolution, Serpentine: Evolution and Ecology in a Model System, 2011.

R. E. O'dell and V. P. Claassen, Serpentine Revegetation: A Review. Northeast. Nat, vol.16, pp.253-271, 2009.

A. Pal, P. Choudhuri, S. Dutta, P. K. Mukherjee, and .. K. Paul, Isolation and characterization of nickel-resistant microflora from serpentine soils of Andaman, World J. Microbiol. Biotechnol, vol.20, pp.881-886, 2004.

A. Pal and A. K. Paul, Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil, Microbiol. Res, vol.159, pp.347-354, 2004.

,

A. Pal, G. Wauters, and .. K. Paul, Nickel tolerance and accumulation by bacteria from rhizosphere of nickel hyperaccumulators in serpentine soil ecosystem of Andaman, India. Plant Soil, vol.293, pp.37-48, 2007.

D. G. Panaccione, N. L. Sheets, S. P. Miller, and J. R. Cumming, Diversity of Cenococcum geophilum Isolates from Serpentine and Non-Serpentine Soils, Mycologia, vol.93, 2001.

Y. Park, K. Suzuki, D. Yim, K. Lee, E. Kim et al., Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA, Antonie van LeeuwenhoekV. Leeuwenhoek, vol.64, pp.307-313, 1993.

F. I. Parra-cota, J. J. Peña-cabriales, S. De-los-santos-villalobos, N. A. Martínez-gallardo, and J. P. Délano-frier, Burkholderia ambifaria and B. caribensis Promote Growth and Increase Yield in Grain Amaranth (Amaranthus cruentus and A. hypochondriacus) by Improving Plant Nitrogen Uptake, PLoS One, vol.9, 2014.

L. P. Partida-martínez and M. Heil, The Microbe-Free Plant: Fact or Artifact? Front, Plant Sci, vol.2, p.100, 2011.

C. Pasquet, F. Monna, F. Van-oort, P. Gunkel-grillon, C. Laporte-magoni et al., Mobility of Ni, Co, and Mn in ultramafic mining soils of New Caledonia, assessed by kinetic EDTA extractions, Environ. Monit. Assess, vol.190, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01899856

C. Paungfoo-lonhienne, T. G. Lonhienne, Y. K. Yeoh, R. I. Webb, P. Lakshmanan et al., A new species of Burkholderia isolated from sugarcane roots promotes plant growth, Microb. Biotechnol, vol.7, pp.142-154, 2014.

B. Pelletier, Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity, Compendium of marine species from New Caledonia. Nouméa : IRD, p.10038861, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00497949

S. I. Pereira and P. M. Castro, Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metaldegraded soils, Environ. Sci. Pollut. Res, vol.21, pp.14110-14123, 2014.

,

F. Pérez-montaño, C. Alías-villegas, R. A. Bellogín, P. Del-cerro, M. R. Espuny et al., Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production, Microbiol. Res, vol.169, pp.325-336, 2014.

,

L. Perin, Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize, Int. J. Syst. Evol. Microbiol, vol.56, pp.1931-1937, 2006.

L. B. Perkins and G. Hatfield, Can commercial soil microbial treatments remediate plantsoil feedbacks to improve restoration seedling performance? Restor, Ecol, vol.24, pp.194-201, 2016.

N. Perrier, H. Amir, and F. Colin, Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, Mycorrhiza, vol.16, pp.449-458, 2006.

C. M. Pieterse, A. Leon-reyes, S. Van-der-ent, and S. C. Van-wees, Networking by small-molecule hormones in plant immunity, Nat. Chem. Biol, vol.5, pp.308-316, 2009.

Y. Pillon, E. Lucas, J. B. Johansen, T. Sakishima, B. Hall et al., An Expanded Metrosideros (Myrtaceae) to Include Carpolepis and Tepualia Based on Nuclear Genes, Syst. Bot, vol.40, pp.782-790, 2015.

I. Pinedo, T. Ledger, M. Greve, and M. J. Poupin, Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front, Plant Sci, vol.6, pp.1-17, 2015.

A. Pitoiset, Le Nickel Une Passion Calédonienne, Le rayon v, 2015.

C. W. Playsted, M. E. Johnston, C. M. Ramage, D. G. Edwards, G. R. Cawthray et al., Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae), New Phytol, vol.170, pp.491-500, 2006.

L. Pol-fachin, R. V. Serrato, and H. Verli, Solution conformation and dynamics of exopolysaccharides from Burkholderia species, Carbohydr. Res, vol.345, 1922.

J. Proctor, Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East, Perspect. Plant Ecol. Evol. Syst, vol.6, pp.105-124, 2003.

M. E. Puente, C. Y. Li, and Y. Bashan, Endophytic bacteria in cacti seeds can improve the development of cactus seedlings, Environ. Exp. Bot, vol.66, pp.402-408, 2009.

S. W. Ragsdale, Nickel biochemistry, Curr. Opin. Chem. Biol, vol.2, pp.208-215, 1998.

M. Rajkumar, N. Ae, and H. Freitas, Endophytic bacteria and their potential to enhance heavy metal phytoextraction, Chemosphere, vol.77, pp.153-160, 2009.

,

M. Rajkumar and H. Freitas, Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard, Bioresour. Technol, vol.99, pp.3491-3499, 2008.

,

M. Rajkumar and H. Freitas, Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals, Chemosphere, vol.71, pp.834-876, 2008.

M. Rajkumar, S. Sandhya, M. N. Prasad, and H. Freitas, Perspectives of plant-associated microbes in heavy metal phytoremediation, Biotechnol. Adv, vol.30, pp.1562-74, 2012.

M. Rajkumar, M. N. Vara-prasad, H. Freitas, and N. Ae, Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals, Crit. Rev. Biotechnol, vol.29, pp.120-130, 2009.

B. E. Ramey, M. Koutsoudis, S. B. Bodman, . Von, and C. Fuqua, Biofilm formation in plantmicrobe associations, Curr. Opin. Microbiol, vol.7, pp.602-609, 2004.

,

G. S. Raupach and J. W. Kloepper, Biocontrol of Cucumber Diseases in the Field by Plant Growth-Promoting Rhizobacteria With and Without Methyl Bromide Fumigation, Plant Dis, vol.84, pp.1073-1075, 2000.

W. Raweekul and S. Wuttitummaporn, Plant Growth Promotion by Endophytic Bacteria Isolated from Rice (Oryza sativa), Thammasat Int. J. Sci. Technol, vol.21, pp.7-17, 2016.

R. D. Reeves, A. J. Baker, A. Borhidi, and R. Berazaín, Nickel-accumulating plants from the ancient serpentine soils of Cuba, New Phytol, vol.133, pp.217-224, 1996.

V. M. Reis, Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium, Int. J. Syst. Evol. Microbiol, vol.54, pp.2155-2162, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02569653

,

D. Revillini, C. A. Gehring, and N. C. Johnson, The role of locally adapted mycorrhizas and rhizobacteria in plant-soil feedback systems, Funct. Ecol, vol.30, pp.1086-1098, 2016.

A. E. Richardson, J. Barea, A. M. Mcneill, and C. Prigent-combaret, Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms, Plant Soil, vol.321, pp.305-339, 2009.
URL : https://hal.archives-ouvertes.fr/halsde-00525548

M. Riefler, Arabidopsis Cytokinin Receptor Mutants Reveal Functions in Shoot Growth, Leaf Senescence, Seed Size, Germination, Root Development, and Cytokinin Metabolism, Plant Cell Online, vol.18, pp.40-54, 2006.

P. A. Riley, Melanin. Int. J. Biochem. Cell Biol, vol.29, pp.13-20, 1997.

M. Rodriguez-diaz, B. Rodelas-gonzales, C. Pozo-clemente, M. V. Martinez-toledo, and J. Gonzalez-lopez, A Review on the Taxonomy and Possible Screening Traits of Plant Growth Promoting Rhizobacteria, in: Plant-Bacteria Interactions, pp.55-80, 2008.

,

D. Roesti, K. Ineichen, O. Braissant, A. Wiemken, M. Aragno et al., Bacteria Associated with Spores of the Arbuscular Mycorrhizal Fungi Glomus geosporum and Glomus constrictum, Appl. Environ. Microbiol, vol.71, pp.6673-6679, 2005.

,

B. Román-ponce, D. M. Reza-vázquez, S. Gutiérrez-paredes, D. Haro-cruz, M. De et al., Plant Growth-Promoting Traits in Rhizobacteria of Heavy Metal-Resistant Plants and Their Effects on Brassica nigra Seed Germination, Pedosphere, vol.27, pp.511-526, 2017.

R. L. Rubin, K. J. Van-groenigen, and B. A. Hungate, Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis, Plant Soil, vol.416, pp.309-323, 2017.

A. Russo, G. Carrozza, . Pietro, L. Vettori, C. Felici et al., Innovations in Biotechnology. InTech, 2012.

G. S. Saddler and P. M. Guimar?es, Curtobacterium, in: Bergey's Manual of Systematics of Archaea and Bacteria, pp.1-14, 2015.

B. S. Saharan and V. Nehra, Plant Growth Promoting Rhizobacteria : A Critical Review, Life Sci. Med. Res, pp.1-30, 2011.

M. Saleem, M. Arshad, S. Hussain, and A. S. Bhatti, Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture, J. Ind. Microbiol. Biotechnol, vol.34, pp.635-648, 2007.

J. F. Salles, J. A. Veen, . Van, D. Elsas, . Van et al., Multivariate Analyses of Burkholderia Species in Soil : Effect of Crop and Land Use History, Appl. Environ. Microbiol, vol.70, pp.4012-4020, 2004.

J. Sarrailh and N. Ayrault, Revégétalisation des sites des anciennes mines de nickel en Nouvelle-Caledonie, Unasylva, vol.52, pp.16-20, 2000.

A. Sawana, M. Adeolu, and R. S. Gupta, Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species, Front. Genet, vol.5, pp.1-22, 2014.

,

R. Z. Sayyed, D. D. Jamadar, and P. R. Patel, Production of Exo-polysaccharide by Rhizobium sp, Indian J. Microbiol, vol.51, pp.294-300, 2011.

S. P. Schechter and T. D. Bruns, Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages, Mol. Ecol, vol.17, pp.3198-3210, 2008.

H. G. Schlegel, J. Cosson, and A. J. Baker, Nickel-hyperaccumulating Plants Provide a Niche for Nickel-resistant Bacteria, Bot. Acta, vol.104, pp.18-25, 1991.

,

G. Selvakumar, R. Krishnamoorthy, K. Kim, and T. Sa, Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls, PLoS One, vol.11, 2016.

R. V. Serrato, G. L. Sassaki, L. M. Cruz, F. O. Pedrosa, P. A. Gorin et al., Culture conditions for the production of an acidic exopolysaccharide by the nitrogenfixing bacterium Burkholderia tropica, Can. J. Microbiol, vol.52, pp.489-493, 2006.

A. Sessitsch, Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties, Int. J. Syst. Evol. Microbiol, vol.55, pp.1187-1192, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00019095

A. Sessitsch, M. Kuffner, P. Kidd, J. Vangronsveld, W. W. Wenzel et al., The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils, Soil Biol. Biochem, vol.60, pp.182-194, 2013.

M. W. Shane, G. R. Cawthray, M. D. Cramer, J. Kuo, and H. Lambers, Specialized "dauciform" roots of Cyperaceae are structurally distinct, but functionally analogous with "cluster" roots, Plant, Cell Environ, vol.29, 1989.

M. W. Shane, K. W. Dixon, and H. Lambers, The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae), New Phytol, vol.165, pp.887-898, 2005.

A. Silipo, T. Ierano, R. Lanzetta, A. Molinaro, and M. Parrilli, The Structure of the O-Chain Polysaccharide from the Gram-Negative Endophytic Bacterium Burkholderia phytofirmans Strain PsJN, European J. Org. Chem, pp.2303-2308, 2008.

R. K. Singh, N. Malik, and S. Singh, Improved Nutrient Use Efficiency Increases Plant Growth of Rice with the Use of IAA-Overproducing Strains of Endophytic Burkholderia cepacia Strain RRE25, Microb. Ecol, vol.66, pp.375-384, 2013.

S. E. Smith and D. Read, Mycorrhizal Symbiosis, p.800, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01268065

S. E. Smith and F. A. Smith, Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales, Annu. Rev. Plant Biol, vol.62, pp.227-250, 2011.

B. R. Solano, J. B. Maicas, and F. J. Mañero, Physiological and Molecular Mechanisms of Plant Growth Promoting Rhizobacteria (PGPR). Ahmad I, Plantbacteria Interact. Strateg. Tech. to Promot. plant growth, pp.41-54, 2008.

,

C. Spandler, D. Rubatto, and J. Hermann, Late Cretaceous-Tertiary tectonics of the southwest Pacific: Insights from U-Pb sensitive, high-resolution ion microprobe (SHRIMP) dating of eclogite facies rocks from New Caledonia, Tectonics, vol.24, pp.1-16, 2005.

E. Stackebrandt and B. M. Gobel, Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology, Int. J. Syst. Evol. Microbiol, vol.44, pp.846-849, 1994.

E. Stackebrandt, F. A. Rainey, and N. L. Ward-rainey, Proposal for a New Hierarchic Classification System, Actinobacteria classis nov, Int. J. Syst. Bacteriol, vol.47, pp.479-491, 1997.

R. D. Stoppel and H. G. Schlegel, Nickel-resistant bacteria from anthropogenically nickelpolluted and naturally nickel-percolated ecosystems, Appl. Environ. Microbiol, vol.61, pp.2276-2285, 1995.

A. V. Sturz, B. R. Christie, B. G. Matheson, and J. Nowak, Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth, Biol. Fertil. Soils, vol.25, pp.13-19, 1997.

A. V. Sturz and B. G. Matheson, Populations of endophytic bacteria which influence hostresistance to Erwinia-induced bacterial soft rot in potato tubers, Plant Soil, vol.184, pp.265-271, 1996.

F. Su, C. Jacquard, S. Villaume, J. Michel, F. Rabenoelina et al., Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana, Front. Plant Sci, vol.6, pp.1-13, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02945292

Z. R. Suárez-moreno, J. Caballero-mellado, B. G. Coutinho, L. Mendonça-previato, E. K. James et al., Common Features of Environmental and Potentially Beneficial Plant-Associated Burkholderia, Microb. Ecol, vol.63, pp.249-266, 2012.

,

S. Kumar, A. Mody, K. Jha, and B. , Bacterial exopolysaccharides -a perception, J. Basic Microbiol, vol.47, pp.103-117, 2007.

N. Suwantarat, C. Weik, M. Romagnoli, B. C. Ellis, N. Kwiatkowski et al., Practical Utility and Accuracy of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Corynebacterium Species and Other Medically Relevant Coryneform-Like Bacteria, Am. J. Clin. Pathol, vol.145, pp.22-28, 2016.

H. I. Tak, F. Ahmad, and O. O. Babalola, Reviews of Environmental Contamination and Toxicology, vol.223, 2013.

,

M. Takeuchi and K. Hatano, Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium, Int. J. Syst. Bacteriol, vol.48, pp.739-747, 1998.

S. Taktek, M. Trépanier, P. M. Servin, M. St-arnaud, Y. Piché et al., Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198, Soil Biol. Biochem, vol.90, pp.1-9, 2015.

C. Talbi, M. J. Delgado, L. Girard, A. Ramirez-trujillo, J. Caballero-mellado et al., Burkholderia phymatum Strains Capable of Nodulating Phaseolus vulgaris Are Present in Moroccan Soils, Appl. Environ. Microbiol, vol.76, pp.4587-4591, 2010.

M. T. Tarkka and P. Frey-klett, Mycorrhiza Helper Bacteria, in: Mycorrhiza, pp.113-132, 2008.

Y. Tian, B. H. Kong, S. L. Liu, C. L. Li, R. Yu et al., Burkholderia grimmiae sp. nov., isolated from a xerophilous moss (Grimmia montana), Int. J. Syst. Evol. Microbiol, vol.63, pp.2108-2113, 2013.

S. Timmusk, L. Behers, J. Muthoni, A. Muraya, and A. Aronsson, Perspectives and Challenges of Microbial Application for Crop Improvement, Front. Plant Sci, vol.8, pp.1-10, 2017.

T. Tscharntke, Y. Clough, T. C. Wanger, L. Jackson, I. Motzke et al., Global food security, biodiversity conservation and the future of agricultural intensification, Biol. Conserv, vol.151, pp.53-59, 2012.

,

K. Turnau and J. Mesjasz-przybylowicz, Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa, Mycorrhiza, vol.13, pp.185-90, 2003.

A. Turrini, L. Avio, M. Giovannetti, and M. Agnolucci, Functional Complementarity of Arbuscular Mycorrhizal Fungi and Associated Microbiota: The Challenge of, Translational Research. Front. Plant Sci, vol.9, pp.10-13, 2018.

S. K. Upadhyay, J. S. Singh, and D. P. Singh, Exopolysaccharide-Producing Plant Growth-Promoting Rhizobacteria Under Salinity Condition, Pedosphere. An Int. J, vol.21, issue.11, pp.60120-60123, 2011.

J. Vacheron, G. Desbrosses, M. Bouffaud, B. Touraine, Y. Moënne-loccoz et al., Plant growth-promoting rhizobacteria and root system functioning, Front. Plant Sci, vol.4, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02522224

A. Valverde, Burkholderia ferrariae sp. nov., isolated from an iron ore in Brazil, Int. J. Syst. Evol. Microbiol, vol.56, pp.2421-2425, 2006.

A. Van-der-ent, A. J. Baker, R. D. Reeves, A. J. Pollard, and H. Schat, Hyperaccumulators of metal and metalloid trace elements: Facts and fiction, Plant Soil, vol.362, pp.319-334, 2013.

A. Van-der-ent, A. J. Baker, M. M. Van-balgooy, and A. Tjoa, Mining, nickel hyperaccumulators and opportunities for phytomining, J. Geochemical Explor, vol.128, pp.72-79, 2013.

,

P. Vandamme, J. Goris, W. Chen, P. De-vos, and A. Willems, Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., Nodulate the Roots of Tropical Legumes, Syst. Appl. Microbiol, vol.25, pp.507-512, 2002.

P. Vandamme, K. Opelt, N. Knochel, C. Berg, S. Schonmann et al., Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growthpromoting properties, Int. J. Syst. Evol. Microbiol, vol.57, pp.2228-2235, 2007.

P. Vandamme and C. Peeters, Time to revisit polyphasic taxonomy, Antonie Van Leeuwenhoek, vol.106, pp.57-65, 2014.

P. Vandamme, M. Vancanneyt, B. Pot, L. Mels, B. Hoste et al., Polyphasic Taxonomic Study of the Emended Genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an Aerotolerant Bacterium Isolated from Veterinary Specimens, Int. J. Syst. Bacteriol, vol.42, pp.344-356, 1992.

,

C. Vanhaverbeke, A. Heyraud, and K. Mazeau, Conformational analysis of the exopolysaccharide from Burkholderia caribensis strain MWAP71: Impact on the interaction with soils, Biopolymers, vol.69, pp.480-497, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00123081

E. Vanlaere, J. R. Van-der-meer, E. Falsen, J. F. Salles, E. De-brandt et al., Burkholderia sartisoli sp. nov., isolated from a polycyclic aromatic hydrocarboncontaminated soil, Int. J. Syst. Evol. Microbiol, vol.58, pp.420-423, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02554998

,

L. M. Vega, J. Mathieu, Y. Yang, B. H. Pyle, R. J. Mclean et al., Nickel and cadmium ions inhibit quorum sensing and biofilm formation without affecting viability in Burkholderia multivorans, Int. Biodeterior. Biodegrad, vol.91, pp.82-87, 2014.

L. Velásquez and J. Dussan, Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus, J. Hazard. Mater, vol.167, pp.713-716, 2009.

J. Vessey, Plant growth promoting rhizobacteria as biofertilizers, Plant Soil, vol.255, pp.571-586, 2003.

V. Viallard, I. Poirier, B. Cournoyer, J. Haurat, S. Wiebkin et al., Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia, Int. J. Syst. Bacteriol, vol.48, pp.549-563, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02874487

K. Vijayaraghavan and Y. Yun, Bacterial biosorbents and biosorption, Biotechnol. Adv, vol.26, pp.266-291, 2008.

M. Vithanage, A. U. Rajapaksha, C. Oze, N. Rajakaruna, and C. B. Dissanayake, Metal release from serpentine soils in Sri Lanka, Environ. Monit. Assess, vol.186, pp.3415-3429, 2014.

A. Vivas, B. Biró, J. M. Ruíz-lozano, J. M. Barea, and R. Azcón, Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity, Chemosphere, vol.62, pp.1523-1533, 2006.

,

S. S. Vurukonda, S. Vardharajula, M. Shrivastava, and A. Skz, Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria, Microbiol. Res, vol.184, pp.13-24, 2016.

F. Wang, Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications, Crit. Rev. Environ. Sci. Technol, vol.47, pp.1901-1957, 2017.

W. .. Wenzel and F. Jockwer, Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps, Environ. Pollut, vol.104, pp.139-139, 1999.

S. N. Whiting, R. D. Reeves, D. Richards, M. S. Johnson, J. A. Cooke et al., Research Priorities for Conservation of Metallophyte Biodiversity and their Potential for Restoration and Site Remediation, Restor. Ecol, vol.12, pp.106-116, 2004.

C. R. Woese, Bacterial evolution, Microbiol. Rev, vol.51, pp.221-71, 1987.

A. Wong-villarreal and J. Caballero-mellado, Rapid identification of nitrogen-fixing and legume-nodulating Burkholderia species based on PCR 16S rRNA species-specific oligonucleotides, Syst. Appl. Microbiol, vol.33, pp.35-43, 2010.

,

S. R. Woodell, Serpentine and its vegetation: A multidisciplinary approach, Trends Ecol. Evol, vol.3, pp.26-27, 1988.

S. C. Wu, K. C. Cheung, Y. M. Luo, and M. H. Wong, Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea, Environ. Pollut, vol.140, pp.124-135, 2006.

A. Wulff, Le micro-endémisme dans un hotspot de biodiversité : approche globale sur la flore vasculaire de la Nouvelle-Calédonie et analyse comparative au sein du genre Scaevola, 2012.

,

A. Wulff, L. L'huillier, C. Véa, and T. Jaffré, Espèces indigènes utilisables en revégétalisation, Les Milieux Sur Substrats Ultramafiques et Leur Restauration. Noumea, pp.231-344, 2010.

E. Yabuuchi, Y. Kosako, H. Oyaizu, I. Yano, H. Hotta et al., Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb, nov. Microbiol. Immunol, vol.36, pp.1251-75, 1992.

K. Yamada and K. Komagata, Taxonomic studies on coryneform bacteria, J. Gen. Appl. Microbiol, vol.18, pp.417-431, 1972.

P. X. Yang, L. Ma, M. H. Chen, J. Q. Xi, F. He et al., Phosphate Solubilizing Ability and Phylogenetic Diversity of Bacteria from P-Rich Soils Around Dianchi Lake Drainage Area of China, Pedosphere, vol.22, pp.707-716, 2012.

H. Zhang, S. Hanada, T. Shigematsu, K. Shibuya, Y. Kamagata et al., Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE, Int. J. Syst. Evol. Microbiol, vol.50, pp.743-749, 2000.

H. Zhu, J. Guo, M. Chen, G. Feng, and Q. Yao, Burkholderia dabaoshanensis sp. nov., a Heavy-Metal-Tolerant Bacteria Isolated from Dabaoshan Mining Area Soil in China, PLoS One, vol.7, 2012.

D. K. Zinniel, P. Lambrecht, N. B. Harris, Z. Feng, D. Kuczmarski et al., Isolation and Characterization of Endophytic Colonizing Bacteria from Agronomic Crops and Prairie Plants, Appl. Environ. Microbiol, vol.68, pp.2198-2208, 2002.

. De-gonin, major element content (ie. Ca_upt) (Ca, Mg, K, P), Ca/Mg ratio in shoot (CaMg_S) and roots (CaMg_R) and metal translocation factor (ie. Co_FT) (Co, Cr, Fe, Mn, Ni) for Tetraria comosa and 26 variables (same variables + the abundance of arbuscules (A)) for Metrosideros laurifolia. Analyses were carried out using R software with the 'FactoMineR' package. HCPC used Euclidean distances for calculating dissimilarities between observations and average method to define cluster, 226 Annexes Annexe 1 Analyse en composantes principales suivi d'une classification hiérarchique pour T. comosa et M. laurifolia. Les variables utilisées pour T. comosa sont les biomasses des parties aériennes (BS) et racinaires (BR), la densité (M) et la fréquence (F) de mycorhization, la sporulation de Rhizophagus neocaledonicus (Spore_Rhizo) et Claroideoglomus etunicatum nc (Spore_Claro), les concentrations en éléments dans les parties aériennes (ie. Ca_S) et racinaires (ie. Ca._R), vol.1, 2010.

, Annexe 2 Photographies des plants de Tetraria comosa après huit mois en serre en fonction des différents traitements

, Annexe 3 Photographies des plants de Metrosideros laurifolia après sept mois en serre en fonction des différents traitements

. De-gonin, Caballeronia novacaledonica STM10272 T , 2. STM10274, 3. STM10275, 4. STM10276, 5. STM10277, 6. STM10278, 7. Paraburkholderia ultramafica STM10279 T , 8. STM10280, 9. STM102781, 10. STM10282, 11. STM10283, 12, vol.1, 2013.

, Les valeurs indiquées au niveau des noeuds d'arbres sont des valeurs d'occurrence de 1000 répliques de bootstrap. Les valeurs de bootstrap supérieures à 75% sont affichées. La barre d'échelle indique le nombre de substitutions par site, Annexe 5 Relations phylogénétiques entre les espèces de Bradyrhizobium, basées sur l'analyse génomique de l'ARNr 16S

, Annexe 6 Relations phylogénétiques entre les espèces de Sphingomonas basées sur l'analyse génomique de l'ARNr 16S. Les valeurs indiquées au niveau des noeuds d'arbres sont des valeurs d'occurrence de 1000 répliques de bootstrap. Les valeurs de bootstrap supérieures à 75% sont affichées. La barre d'échelle indique le nombre de substitutions par site