, Spruceanthus thozetianus (Gottsche et F. A.Müller) B.Thiers et Gradst

, 7%) a été détecté en tant que composé majoritaire. Les autres sesquiterpénoïdes détectés sont : le caryophyléine-(I3) (203) (13,1%), le cuparène (212) (2,6%), Les constituants de cette espèce sont détaillés dans les Tableaux 35 et 36. Les sesquiterpénoïdes de cet échantillon (MET098) représentent, vol.51, pp.13-224, 2009.

, Un diterpénoïde avec un fort pourcentage relatif : M??70, Les composés diterpéniques identifiés sont le phytol, vol.145, p.91

, Thysananthus spathulistipus (Reinw

, Les constituants détectés et identifiés de cette espèce sont détaillés dans les Tableaux 35 et 36

, Ce composé pourrait être un biomarqueur de cette espèce et potentiellement s'avérer être une nouvelle molécule, L'échantillon (MET119) possède un terpénoïde oxygéné majoritaire non identifié : M??57, vol.95, p.27

D. 1h and J. =. , Hz) 2,56 (1H, d, J = 17,1 Hz) 6,38 (1H, d, J = 2 Hz) 7,24 (m) 1,02 (3H, s) 0,82 (d, J = 7,6 Hz) 0,91 (3H, s) 1,37 (3H, s) 1,73 -1,79 (1H, m) 3,70 (1H, d, J = 1,5 Hz), vol.17, issue.2, pp.73-74, 2001.

, Attribution des signaux des spectres RMN 1 H et 13 C de l'isopinguisanine, vol.43

*. 1h, D. , J. =-;-*1h, D. , and J. =. , , vol.8

D. and J. =. , Hz) 3,89 (3H, s) 3,90 (3H, s) 7,85 (d, J =, vol.9, issue.2, p.49

, Attribution des signaux des spectres RMN 1 H et 13 C du 5-hydroxy-7,4'-diméthoxyflavone, vol.45

, 1 Hz) 6,61 (1H, dd, J = 8,1; 2,1 Hz) 2,76 (2H, m, J = 4,1 Hz) 2,80 (2H, m, J = 4,1 Hz) 3,84 (3H, s) 3,77 (3H, s) 6,80 (1H, d, J = 2,1 Hz) 6,76 (1H, d, J =, vol.8, p.7

;. Hz, D. , and J. =. , H-?') 6' 6,78 (1H, ddd, *CH), vol.6, p.7

, Attribution des signaux des spectres RMN 1 H et 13 C du 3-hydroxy-4,4'-diméthoxybibenzyl, vol.46

D. 1h and J. =. , Hz) 6,74 (1H, d, J = 8 Hz) 6,63 (1H, dd, J =, vol.6, issue.1

(. 1h, D. , and J. =. ,

(. 1h, J. Dd, D. =-;-*1h, and J. =. , Hz) 2.85 (2H, s) 2.85 (2H, s) 5.91 (2H, s) 3.80 (3H,s) ?' 129,5 (2*CH), vol.7

, Attribution des signaux des spectres RMN 1 H et 13 C du dihydrognétine (220), vol.47

, Composé, vol.15, issue.11

, Nous avons effectué l'identification structurale sur la base de l'étude des spectres RMN 13 C et

, H (présentés en annexe) ainsi que les spectres de RMN 2D (COSY, HMBC et HSQC)

, CH 2 ) 72,0 (CH) 42,5 (CH 2 ) 141,0 (C), D'après la comparaison des données RMN 13 C et 1 H expérimentales obtenues avec celles de la littérature, ci-établie dans le Tableau 56, la parfaite concordance de ces données [129] nous permet de conclure que le composé 15 est identifié au stigmastérol, vol.37, p.1

, 9 Hz) 0,676 (3H, brds) 0,987 (3H, s) 2,02 (1H, m) 0,987 (3H, brds) 5,13 (1H, dd, J = 13,3 ; 8,5 Hz) 4,99 (1H, dd, J = 15, 7 Hz) 1,51 (1H, m) 1,51 (1H, m) 0,817 (3H, brds) 0,767 (3H, brds) 1,34 (1H, m) et 1,4 (1H, m) 0,657 (3H, brds) 1,84(1H, m) et 1,08 1H, (m) 1,51(1H, m) et 1,83 (1H, m) 3,51 (1H, m) 2,30(1H, m) et 2,23(1H, m) 5,34 (1H, m) 1,97 (1H, m) et 1,5 (1H, m), vol.8

, CH 2 ) 31,4 (CH 2 ) 173,2 (C) 60,6 (CH 2 ) 14,3 (CH 3 ) 51,0 (CH) 22,8 (CH 3 ) 172,6 (C) 93,4 (CH) 3,66 (3H, s) 7,91 (1H, dd, ) 136,9 (C) 97,7 (CH) 156,1 (C) 136,5 (C) 11,3 (CH 3 ) 145,4 (C) 19,6 (CH 2 ) 17,6 (CH 3 ) 150,6 (C) 104,7 (CH) 138,0 (C), vol.56, p.27

, CH 3 ) 129,2 (C) 189,9 (C) 66,0 (CH) 62 (3H, s) 7,9 (1H, dd, J = 18 ; 11,5 Hz) 6,13 (1H, dd, J = 11,5 ; 1,4 Hz) 6,23 (1H, dd, J = 17,8 ; 1,5 Hz) 9,23 (1H, s) 3,12 (3H, s) 3,59 (2H, q, J = 7,8 Hz) 1,62 (3H, t, J = 7,6 Hz) 9,39 (1H, s) 3,34 (3H, s) 6,147 (1H, s) 3,82 (3H, s) 4,27 (1H, ddd, J = 8,8 ; 2,2 ; 3,2 Hz) 2,32 (1H, dddd, Attribution des signaux des spectres RMN 1 H et 13 C du, vol.57, pp.3-276

, Attribution des signaux des spectres RMN 1 H et 13 C du, vol.58, p.3

, Composé, vol.18, issue.277

, Nous avons effectué l'identification structurale sur la base de l'étude des spectres RMN 13 C et

, H (présentés en annexe) ainsi que les spectres de RMN 2D (COSY, HMBC et HSQC). 95,0 (CH), vol.73, p.88

, J =, vol.3

, J =, vol.8

D. 1h and J. =. , 57 Hz) 3,46 (1H, t, 98 Hz) 3,75 (1H, t, J = 9, vol.55

, Cette étude a mis à jour deux compositions différentes au sein de cette espèce. Les échantillons étudiés appartiennent à des chimiotypes déjà observés dans le genre Porella, à savoir le chimiotype pinguisane-sacculatane et le chimiotype pinguisane, Les composants de trois échantillons de Porella viridissima ont été investigués par CPG-FID-SM

, Les essais se déroulent en microplaques stériles (polystyrène) 96 puits à fond plat avec couvercle (Falcon®

, Les cellules B2 à H2 sont dédiées au témoin négatif (milieu de culture additionné de suspension bactérienne) et les cellules A11 à H11 au témoin positif (milieu de culture additionné de suspension microbienne et antibiotique de référence), Les microplaques (de 96 puits) utilisées comportent huit lignes et douze colonnes. Les colonnes une et douze sont uniquement remplies de milieu afin d'éviter les effets de bord. Les données exploitées concerneront les colonnes deux à onze incluses et les lignes A et H seront exclusivement réservées aux essais à blanc (milieu de culture additionné de la solution à tester), vol.116, p.99

, Les extraits étant composés d'une multitude de constituant, la CI 50 de ceux-ci ne reflète pas le potentiel réel antimicrobien de la ou les molécule (s) qui pourraient être à l'origine de l'activité, ceux-ci étant supposés avoir une meilleur CI 50 que l'extrait. Ce type de raisonnement étant valable car on se place dans un cas où l'activité serait due à un ou plusieurs composés, Les résultats obtenus mènent tout naturellement à envisager un « biosourcing

, Il faut aussi avoir en tête que le méthanol est un solvant d'extraction moins spécifique que l'éther, et donc extrait une diversité chimique plus importante en théorie. Ceci suppose que les molécules aient globalement des concentrations individuelles plus faibles dans l

, Bazzania francana (MET106, CI 50 = 17,0 ± 1,6 ?g / ml pour S. aureus), Bazzania sp. AD212 (MET117, CI 50 = 14,1±1 ?g / ml pour S. epidermidis) et Chiastocaulon caledonicum (MET101, CI 50 = 6,7±1 pour S. aureus), seuls les extraits au méthanol ont montré une activité intéressante et les essais menés en en dose unique sur les extraits au méthanol tendent à montrer que seuls les composés obtenus par extraction au méthanol de ces deux plantes seraint des « hits » potentiels, Concernant Bazzania serrifolia (MET099, CI 50 = 17,7 ± 1,9 ?g / ml pour S. epidermidis)

, CI 50 = 51,3±11 ?g / ml pour S. aureus), Bazzania parisii (MET109A, CI 50 = 19,3 ± 0,8 ?g / ml pour S. epidermidis) et Bazzania subintegra (MET113A, CI 50 = 16,3±1,1 ?g / ml pour S. aureus). A ce titre, l'analyse en CPG-FID-SM peut révéler le ou les composant(s) responsables de cette activité, Les extraits éther des plantes suivantes ont montré des activités inhibitrices de croissance pour au moins une des souches testées : Thysananthus pancheri (MET120

C. H. Wellman, P. L. Osterloff, and U. Mohiuddin, Fragments of the earliest land plants, Nature, vol.425, pp.282-285, 2003.

R. Ligrone, J. G. Duckett, and K. S. Renzaglia, Major transitions in the evolution of early land plants: a bryological perspective, Ann. Bot, vol.109, pp.851-871, 2012.

N. D. Pires and L. Dolan, Morphological evolution in land plants: new designs with old genes, Philos. Trans. R. Soc. B Biol. Sci, vol.367, pp.508-518, 2012.

T. Hallingbäck, N. G. Hodgetts, . Iucn/ssc-bryophyte-specialist, and . Group, International Union for Conservation of Nature and Natural Resources. 2000. Mosses, liverworts, and hornworts: status survey and conservation action plan for bryophytes, Sveriges lantbruksuniversitet

M. Von-konrat, M. Renner, L. Söderström, A. Hagborg, and J. Mutke, Chapter Nine: Early Land Plants Today: Liverwort Species Diversity and the Relationship with Higher Taxonomy and Higher Plants, Fieldiana Bot, vol.47, p.91, 2008.

U. Gerson, Bryophytes and Invertebrates, pp.291-332, 1982.

S. R. Gradstein, J. Homeier, and D. Gansert, The tropical mountain forest: patterns and processes in a biodiversity hotspot, 2008.

L. D. Gignac, Bryophytes as Indicators of Climate Change, The Bryologist, vol.104, pp.410-420, 2001.

S. O. Olarinmoye, Ecology of epiphyllous liverworts: growth in three natural habitats in Western Nigeria, J. Bryol, vol.8, pp.275-289, 1974.

X. He, Y. Sun, and R. Zhu, The Oil Bodies of Liverworts: Unique and Important Organelles in Land Plants, Crit. Rev. Plant Sci, vol.32, pp.293-302, 2013.

J. M. Glime, Water Relations: Leaf Strategies, 2015.

C. Da, Leaf Arrangement in Relation to Water Conduction in the Foliose Hepaticae, Ann. Bot, vol.1, pp.325-328, 1937.

R. Ligrone, J. G. Duckett, and K. S. Renzaglia, Conducting tissues and phyletic relationships of bryophytes, Philos. Trans. R. Soc. B Biol. Sci, vol.355, pp.795-813, 2000.

M. C. Proctor, Z. Nagy, Z. Csintalan, and Z. Takács, Water-content components in bryophytes: analysis of pressure-volume relationships, J. Exp. Bot, vol.49, pp.1845-1854, 1998.

V. I. Deltoro, A. Calatayud, C. Gimeno, A. Abadía, and E. Barreno, Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts, Planta, vol.207, pp.224-228, 1998.

R. Akula and G. A. Ravishankar, Influence of abiotic stress signals on secondary metabolites in plants, Plant Signal. Behav, vol.6, pp.1720-1731, 2011.

A. Sofia, A. M. De-almeida, A. B. Da-silva, J. M. Da-silva, P. A. Santos et al., Abiotic Stress Responses in Plants: Unraveling the Complexity of Genes and Networks to Survive, 2013.

N. Smirnoff, The role of active oxygen in the response of plants to water deficit and desiccation, New Phytol, vol.125, pp.27-58, 1993.

R. R. Wise, Chilling-enhanced photooxidation: The production, action and study of reactive oxygen species produced during chilling in the light, Photosynth. Res, vol.45, pp.79-97, 1995.

C. Schwartner, C. Michel, K. Stettmaier, H. Wagner, and W. Bors, Marchantins and related polyphenols from liverwort: Physico-chemical studies of their radical-scavenging properties. Free Radic, Biol. Med, vol.20, pp.237-244, 1996.

Y. Asakawa, A. Ludwiczuk, and F. Nagashima, Chemical Constituents of Bryophytes. Bio-and Chemical Diversity, Biological Activity, and Chemosystematics, vol.95, 2013.

M. J. Smanski, R. M. Peterson, S. Huang, and B. Shen, Bacterial diterpene synthases: new opportunities for mechanistic enzymology and engineered biosynthesis, Curr. Opin. Chem. Biol, vol.16, pp.132-141, 2012.

Y. Asakawa, W. Herz, G. W. Kirby, R. E. Moore, W. Steglich et al., Chemical Constituents of the Bryophytes, vol.65, 1995.

Y. Asakawa, Chemical Constituents of the Hepaticae, vol.42, 1982.

P. M. Dewick, The biosynthesis of C5-C25 terpenoid compounds, Nat. Prod. Rep, vol.19, pp.181-222, 2002.

M. C. Schuman, E. C. Palmer-young, A. Schmidt, J. Gershenzon, and I. T. Baldwin, Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors, PLANT Physiol, vol.166, pp.779-797, 2014.

M. J. Durán-peña, B. Ares, J. M. Hanson, J. R. Collado, I. G. Hernández-galán et al., Biological activity of natural sesquiterpenoids containing a gem-dimethylcyclopropane unit, Nat Prod Rep, vol.32, pp.1236-1248, 2015.

A. K. Picman, Biological activities of sesquiterpene lactones, Biochem. Syst. Ecol, vol.14, pp.255-281, 1986.

C. Sell, A fragrant introduction to terpenoid chemistry, Royal Society of Chemistry, 2003.

I. Komala, T. Ito, F. Nagashima, Y. Yagi, M. Kawahata et al., Zierane sesquiterpene lactone, cembrane and fusicoccane diterpenoids, from the Tahitian liverwort Chandonanthus hirtellus, Phytochemistry, vol.71, pp.1387-1394, 2010.

A. Ludwiczuk and Y. Asakawa, Fingerprinting of Secondary Metabolites of Liverworts: Chemosystematic Approach, J. AOAC Int, vol.97, pp.1234-1243, 2014.

C. Grammes, G. Burkardt, M. Veith, V. Huch, and H. Becker, epi-neoverrucosane-and epi-homeoverrucosane-type diterpenoids from Fossombronia alaskana, Phytochemistry, vol.44, pp.1495-1502, 1997.

J. R. Stoker and D. M. Bellis, The biosynthesis of coumarin in Melilotus Alba, J. Biol. Chem, vol.237, 1962.

L. Kraut and R. Mues, The First Biflavone Found in Liverworts and Other Phenolics and Terpenoids from Chandonanthus hirtellus ssp. giganteus and Plagiochila asplenioides, Z Naturforsch, vol.54, pp.6-10, 1999.

H. Feld, D. S. Rycroft, and J. Zapp, Chromenes and Prenylated Benzoic Acid Derivatives from the Liverwort Pedinophyllum interruptum, Z Naturforsch, vol.59, pp.825-828, 2004.

F. Kiang, S. Chang, and C. Wu, Naphthalene and isocoumarin derivatives from the liverwort Wettsteinia inversa, Phytochemistry, vol.37, pp.1459-1461, 1994.

H. Yoshikawa, Y. Ichiki, K. D. Sakakibara, H. Tamura, and M. Suiko, The biological and structural similarity between lunularic acid and abscisic acid, Biosci. Biotechnol. Biochem, vol.66, pp.840-846, 2002.

Y. Asakawa, Recent advances in phytochemistry of bryophytes-acetogenins, terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand, Argentinean and European liverworts, Phytochemistry, vol.56, pp.297-312, 2001.

Y. Asakawa, Chemosystematics of the Hepaticae, Phytochemistry, vol.65, pp.623-669, 2004.

Y. Asakawa, A. Ludwiczuk, and M. Toyota, Chemical Analysis of Bryophytes, Anal. Chem, pp.1-53, 2014.

F. Nagashima, T. Sekiguchi, S. Takaoka, and A. Yoshinori, Terpenoids and Aromatic Compounds from the New Zealand Liverworts Plagiochila, Schistochila and Heteroscyphus Species, Chem. Pharm. Bull. (Tokyo), vol.52, pp.556-560, 2004.

U. Martini, J. Zapp, and H. Becker, Chlorinated macrocyclic bisbibenzyls from the liverwort Bazzania trilobata, Phytochemistry, vol.47, pp.89-96, 1998.

E. Pichersky and D. R. Gang, Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective, Trends Plant Sci, vol.5, pp.439-445, 2000.

M. Wink, Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective, Phytochemistry, vol.64, pp.3-19, 2003.

Y. Asakawa, Biologically active compounds from bryophytes, Pure Appl. Chem, vol.79, 2007.

R. P. Shirsat, Ethnomedicinal Uses of Some Common Lower Plants Used by Tribals of Melghat Region (MS) India, Ethnobot. Leafl, p.88, 2008.

S. Chandra, D. Chandra, A. Barh, . Pankaj, R. K. Pandey et al., Bryophytes: Hoard of remedies, an ethno-medicinal review, J. Tradit. Complement. Med, vol.7, pp.94-98, 2017.

Y. Asakawa, A. Ludwiczuk, and F. Nagashima, Phytochemical and biological studies of bryophytes, Phytochemistry, vol.91, pp.52-80, 2013.

C. Wu, A. L. Gunatilaka, F. L. Mccabe, R. K. Johnson, R. W. Spjut et al., Bioactive and other sesquiterpenes from Chiloscyphus rivularis, J. Nat. Prod, vol.60, pp.1281-1286, 1997.

E. J. Burgess, L. Larsen, and N. B. Perry, A Cytotoxic Sesquiterpene Caffeate from the Liverwort Bazzania novae-zelandiae, J. Nat. Prod, vol.63, pp.537-539, 2000.

F. Nagashima, W. Kasai, M. Kondoh, M. Fujii, Y. Watanabe et al., New ent-kaurene-type diterpenoids possessing cytotoxicity from the New Zealand liverwort Jungermannia species, Chem. Pharm. Bull. (Tokyo), vol.51, pp.1189-1192, 2003.

Y. Shu, H. Wei, and C. Wu, Sesquiterpenoids from liverworts Lepidozia vitrea and L. Fauriana, Phytochemistry, vol.37, pp.773-776, 1994.

C. Niu, J. Qu, and . Lou-h-x, Antifungal Bis[bibenzyls] from the Chinese Liverwort Marchantia polymorpha L, Chem Biodivers, vol.3, pp.34-40, 2006.

Y. Asakawa, A. Ludwiczuk, F. Nagashima, M. Toyota, T. Hashimoto et al., Bryophytes: Bio-and Chemical Diversity, Bioactivity and Chemosystematics. HETEROCYCLES, vol.77, p.99, 2009.

I. Komala, T. Ito, F. Nagashima, Y. Yagi, and Y. Asakawa, Cytotoxic, radical scavenging and antimicrobial activities of sesquiterpenoids from the Tahitian liverwort Mastigophora diclados (Brid.) Nees (Mastigophoraceae), J. Nat. Med, vol.64, pp.417-422, 2010.

L. Harinantenaina, S. Kida, and Y. Asakawa, Phytochemistry of three selected liverworts: Conocephalum conicum, Plagiochila barteri and P. terebrans, Arkivoc, vol.7, pp.22-29, 2007.

T. Hashimoto, T. M. Asakawa, and Y. , A highly efficient preparation of lunularic acid and some biological activities of stilbene and dihydrostilbene derivatives, Phytochemistry, vol.27, pp.109-113, 1988.

, La forêt humide | Observatoire de l'environnement Nouvelle Calédonie, 2017.

Y. Jiang, T. Wang, C. De-bie, A. K. Skidmore, X. Liu et al., Satellite-derived vegetation indices contribute significantly to the prediction of epiphyllous liverworts, Ecol. Indic, vol.38, pp.72-80, 2014.

L. Thouvenot, S. R. Gradstein, A. Hagborg, L. Söderström, and J. Bardat, Checklist of the Liverworts and Hornworts of New Caledonia, Cryptogam. Bryol, vol.32, pp.287-390, 2011.

J. Nuzillard and G. M. , Logic for structure determination, Tetrahedron, vol.47, pp.3655-3664, 1991.

J. Heinrichs, S. R. Gradstein, H. Groth, and M. Lindner, Plagiochila cucullifolia var. anomala var. nov. from Ecuador, with notes on discordant molecular and morphological variation in Plagiochila, Plant Syst. Evol, vol.242, pp.205-216, 2003.

J. Rontani and J. K. Volkman, Phytol degradation products as biogeochemical tracers in aquatic environments, Org. Geochem, vol.34, pp.1-35, 2003.

T. Nawrath, J. S. Dickschat, R. Müller, J. Jiang, D. E. Cane et al., Identification of (8S,9S,10S)-8,10-Dimethyl-1-octalin, a Key Intermediate in the Biosynthesis of Geosmin in Bacteria, J. Am. Chem. Soc, vol.130, pp.430-431, 2008.

M. Salem, H. O. Elansary, A. A. Elkelish, A. Zeidler, H. M. Ali et al., vitro Bioactivity and Antimicrobial Activity of Picea abies and Latrix decidua Wood and Bark Extracts. BioRessources, vol.4, pp.9421-9137, 2016.

S. Ali, C. Zhang, A. Mohamed, F. El-baz, A. Hegazy et al., Major constituents of Boswellia carteri resin exhibit cyclooxygenase enzyme inhibition and antiproliferative activity, Nat. Prod. Commun, vol.8, pp.1365-1366, 2013.

H. L. Greve, M. Kaiser, R. Brun, and T. J. Schmidt, Search for new antiprotozoal leads in oleo-gum-resins from plants of the family Burseraceae: Indian frankincense and myrrh, Planta Med, vol.82, p.275, 2016.

M. Kanehisa and G. Susumu, Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res, vol.28, pp.27-30, 2000.

Y. J. Hong, D. Tantillo, . Bazzanene, . Chamigrene, . Chamipinene et al., Unifying Mechanistic Pathways to Barbatene, J. Am. Chem. Soc, vol.136, pp.2450-2463, 2014.

N. Tabanca, M. Wang, C. Avonto, A. G. Chittiboyina, J. F. Parcher et al., Bioactivity-Guided Investigation of Geranium Essential Oils as Natural Tick Repellents, J. Agric. Food Chem, vol.61, pp.4101-4107, 2013.

S. C. Jain, B. Pancholi, and R. Jain, Antimicrobial, free radical scavenging activities and chemical composition of Peltophorum pterocarpum Baker ex K. Heyne stem extract, Pharm Chem, vol.4, pp.2073-2079, 2012.

M. Govindarajan, M. Rajeswary, G. Benelli, and . ?016, ?-Cadinene,Calarene and ?-4-Carene from Kadsura heteroclita Essential Oil as Novel Larvicides Against Malaria, Dengue and Filariasis Mosquitoes, p.18, 2017.

D. Singh and S. K. Agarwal, Himachalol and -himachalene: Insecticidal principles of himalayan cedarwood oil, J. Chem. Ecol, vol.14, pp.1145-1151, 1988.

Y. Liu, W. H. Brodie, P. J. Callmander, M. W. Rakotondrajaona, R. Rakotobe et al., Antiproliferative Diterpenes from a Malleastrum sp, 2015.

, Nat. Prod. Commun, vol.10, pp.1509-1512

F. Freiburghaus, A. Steck, H. Pfander, and R. Brun, Bioassay-guided isolation of a diastereoisomer of kolavenol from Entada abyssinica active on Trypanosoma brucei rhodesiense, J. Ethnopharmacol, vol.61, pp.179-183, 1998.

J. M. Scher, J. Speakman, J. Zapp, and H. Becker, Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata, Phytochemistry, vol.65, pp.2583-2588, 2004.

T. Hashimoto, I. Nakamura, M. Tori, S. Takaoka, and Y. Asakawa, epi-Neoverrucosaneand ent-clerodane-type diterpenoids and ent-2, 3-secoaromadendrane-and calamenenetype sesquiterpenoids from the liverwort Heteroscyphus planus, Phytochemistry, vol.38, pp.119-127, 1995.

L. Söderström, A. Hagborg, M. Von-konrat, S. Bartholomew-began, D. Bell et al.,

P. Sukkharak, B. Thiers, J. Uribe, J. Vá?a, M. Wigginton et al., World checklist of hornworts and liverworts. PhytoKeys, vol.59, pp.1-828, 2016.

M. Govindarajan, G. Benelli, and . ?016, ?-Humulene and -elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae), Parasitol. Res, vol.115, pp.2771-2778

J. Legault, W. Dahl, E. Debiton, A. Pichette, and J. Madelmont, Antitumor activity of balsam fir oil: production of reactive oxygen species induced by ?-humulene as possible mechanism of action, Planta Med, vol.69, pp.402-407, 2003.

C. Bougatsos, O. Ngassapa, D. Runyoro, and I. B. Chinou, Chemical Composition and in vitro Antimicrobial Activity of the Essential Oils of Two Helichrysum Species from Tanzania, Z Naturforsch, pp.368-372, 2004.

A. Ziaei, M. Ramezani, L. Wright, C. Paetz, B. Schneider et al., Identification of spathulenol in /i>Salvia mirzayanii</i> and the immunomodulatory effects, Phytother. Res, vol.25, pp.557-562, 2011.

F. B. Da-costa, A. S. Vichnewski, and W. , Diterpenes and synthetic derivatives from Viguiera aspillioides with trypanomicidal activity, Planta Med, vol.62, pp.557-559, 1996.

C. Robles-kelly, J. Rubio, M. Thomas, C. Sedán, R. Martinez et al., Effect of drimenol and synthetic derivatives on growth and germination of Botrytis cinerea: Evaluation of possible mechanism of action, Pestic. Biochem. Physiol, 2016.

N. M. Sahi, Evaluation of insecticidal activity of bioactive compounds from Eucalyptus citriodora against Tribolium castaneum, Int. J. Pharmacogn. Phytochem. Res, vol.8, 2016.

F. Inagaki and A. A. , Analysis of 1 H and 13 C nuclear magnetic resonance spectra of spathulenol by two-dimensional methods, J. Chem. Soc. Perkin Trans. 2, pp.1773-1778, 1985.

S. P. Chavan, M. Thakkar, R. K. Kharul, A. B. Pathak, G. V. Bhosekar et al., First enantiospecific synthesis of (+)--herbertenol, Tetrahedron, vol.61, pp.3873-3879, 2005.

C. Ghelardini, N. Galleotti, D. C. Mannelli, L. Mazzanti, G. Bartolini et al., Local anaesthetic activity of -caryophyllene, IL Farm, vol.56, pp.387-389, 2001.

J. Legault and P. A. ?007, Potentiating effect of -caryophyllene on anticancer activity of ?-humulene, isocaryophyllene and paclitaxel, J. Pharm. Pharmacol, vol.59, pp.1643-1647

M. Oztürk, M. Duru, F. Aydo?mu?-oztürk, M. Harmandar, M. Mahliçli et al., GC-MS analysis and antimicrobial activity of essential oil of Stachys cretica subsp. smyrnaea, Nat. Prod. Commun, vol.4, pp.109-114, 2009.

M. Sköld, A. Karlberg, M. Matura, A. Börje, and . ?006, The fragrance chemicalcaryophyllene-air oxidation and skin sensitization, Food Chem. Toxicol, vol.44, pp.538-545

M. I. Choudhary, I. Batool, M. Atif, S. Hussain, and . Atta-ur-rahman, Microbial Transformation of (?)-Guaiol and Antibacterial Activity of Its Transformed Products, J. Nat. Prod, vol.70, pp.849-852, 2007.

S. Vats and T. Gupta, Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiol. Mol. Biol. Plants, vol.23, pp.239-248, 2017.

S. Khadem and R. J. Marles, Monocyclic Phenolic Acids, 2010.

-. Hydroxy and P. Acids, Occurrence and Recent Bioactivity Studies. Molecules, vol.15, pp.7985-8005

K. Ngbolua, R. Herintsoa, R. Hajatiana, V. Mudogo, D. Tshilanda et al., In vitro Anti-erythrocyte Sickling Effect of Lunularic Acid of Natural Origin, Int. Blood Res. Rev, vol.4, pp.1-6, 2015.

P. Zerbe, A. Chiang, M. Yuen, B. Hamberger, B. Hamberger et al., Bifunctional cis-Abienol Synthase from Abies balsamea Discovered by Transcriptome Sequencing and Its Implications for Diterpenoid Fragrance Production, J. Biol. Chem, vol.287, pp.12121-12131, 2012.

S. Y. Chen, Sclareol Enhance Susceptibility to Cisplatin in Non-Small Cell Lung Cancer, FASEB J, vol.30, 2016.

C. Demetzos, B. Stahl, T. Anastassaki, M. Gazouli, L. S. Tzouvelekis et al., Chemical analysis and antimicrobial activity of the resin Ladano, of its essential oil and of the isolated compounds, Planta Med, vol.65, pp.76-78, 1999.

K. V. Sashidhara, J. N. Rosaiah, A. Kumar, H. K. Bid, R. Konwar et al., Cell growth inhibitory action of an unusual labdane diterpene, 13-epi-sclareol in breast and uterine cancers in vitro, Phytother. Res, vol.21, pp.1105-1108, 2007.

A. Ludwiczuk and Y. Asakawa, Chapter Five: Distribution of Terpenoids and Aromatic Compounds in Selected Southern Hemispheric Liverworts, Fieldiana Bot, vol.47, p.37, 2008.

S. Agger, F. Lopez-gallego, and C. Schmidt-dannert, Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus, Mol. Microbiol, vol.72, pp.1181-1195, 2009.

B. S. Moore, Biosynthesis of marine natural products: macroorganisms (Part B), Nat. Prod. Rep, vol.23, p.615, 2006.

S. R. Gradstein, Y. Asakawa, R. Mues, and R. Klein, On the taxonomic significance of secondary metabolites in the Lejeuneaceae (Hepaticae), Journ Haltori Bot Lab, pp.159-168, 1988.

L. Soderstrom, G. Gradstein, and A. Hagborg, Checklist of the hornworts and liverworts of Java, Phytotaxa, vol.9, pp.53-149, 2014.

M. García, A. Gonzalez-coloma, O. J. Donadel, C. E. Ardanaz, C. E. Tonn et al., Insecticidal effects of Flourensia oolepis Blake (Asteraceae) essential oil, Biochem. Syst. Ecol, vol.35, pp.181-187, 2007.

F. L. Corzo, M. Gilabert, M. F. Alcaide, and A. Bardón, Toxicity of Porella chilensis Sesqui-and Diterpenoids against Larvae of the Corn Pest Spodoptera frugiperda, J.E. Smith) (Lepidotera: Noctuidae). Neotrop. Entomol, vol.41, pp.414-419, 2012.

A. V. Shpatov, S. A. Popov, O. I. Salnikova, T. P. Kukina, E. N. Shmidt et al., Composition and Bioactivity of Lipophilic Metabolites from Needles and Twigs of Korean and Siberian Pines ( Pinus koraiensis SIEBOLD & ZUCC . and Pinus sibirica DU TOUR ), Chem. Biodivers, vol.14, p.1600203, 2017.

P. Coulerie, L. Thouvenot, M. Nour, and Y. Asakawa, Chemical Originalities of New Caledonian Liverworts from Lejeuneaceae Family, Nat. Prod. Commun, vol.10, pp.1501-1504, 2015.

F. Nagashima, H. Izumo, S. Takaoka, M. Tori, and Y. Asakawa, Sesqui-and diterpenoids from the panamanian liverwort Bryopteris filicina, vol.37, pp.433-439, 1994.

P. Sukkharak, A. Ludwiczuk, &. Ya, and R. Gradstein, Studies on the Genus Thysananthus (Marchantiophyta, Lejeuneaceae) 3. Terpenoid Chemistry and Chemotaxonomy of Selected Species of Thysananthus and Dendrolejeunea fruticosa, Cryptogam. Bryol, vol.32, pp.199-209, 2011.

L. Harinantenaina, Y. Takahara, T. Nishizawa, C. Kohchi, G. Soma et al., Chemical constituents of malagasy liverworts, Part V: Prenyl bibenzyls and clerodane diterpenoids with nitric oxide inhibitory activity from Radula appressa and Thysananthus spathulistipus, Chem. Pharm. Bull. (Tokyo), vol.54, pp.1046-1049, 2006.

M. Bungert, J. Gabler, K. Adam, J. Zapp, and H. Becker, Pinguisane sesquiterpenes from the liverwort Porella Navicularis, Phytochemistry, vol.49, pp.1079-1083, 1998.

Y. Asakawa, R. Matsuda, and A. Cheminat, Bibenzyl derivatives from Frullania Species, Phytochemistry, vol.26, pp.1117-1122, 1987.

S. Chungfeng, Z. Tiantao, L. Runhua, and W. A. König, Essential Oil composition of Liverwort /i>Lophozia ventricosa</i>, Chin. J. Appl. Environ. Biol, vol.13, pp.458-460, 2007.

C. Wu and C. Chen, Oxygenated sesquitterpenes from the liverwort Bazzania tridens, Phytochemistry, vol.31, pp.4213-4217, 1992.

C. Fricke, Terpenoide Inhaltsstoffe von Lebermoosen und Heilpflanzen. Terpenoide Inhaltsstoffe Von Lebermoosen Heilpflanzen, p.16, 1999.

A. Saeed, Synthesis of 6-O -methyl ether of Scorzocreticin and Scorzocreticoside I, metabolites from Sorzonera cretica, J. Asian Nat. Prod. Res, vol.8, pp.417-423, 2006.

K. Miura and N. Nakatani, Antioxidative Activity of Flavonoids from Thyme, vol.53, pp.3043-3045, 1989.

Y. Asakawa, K. Takikawa, and M. Tori, Bibenzyl derivatives from the Australian liverwort Frullania falciloba, Phytochemistry, vol.26, p.10, 1987.

I. H. Hardt, A. Rieck, W. A. König, and H. Muhle, Isolepidozene, a diastereomer of bicyclogermacrene, in some liverworts, Phytochemistry, vol.40, pp.605-606, 1995.

G. Bovi-mitre, N. Kamiya, A. Bardón, and Y. Asakawa, Africane-Type Sesquiterpenoids from the Argentine Liverwort Porella swartziana and Their Antibacterial Activity, J. Nat. Prod, vol.67, pp.31-36, 2004.

M. Paulpandi, S. Kannan, R. Thangam, K. Kaveri, P. Gunasekaran et al., In vitro anti-viral effect of -santalol against influenza viral replication, Phytomedicine, vol.19, pp.231-235, 2012.

T. Ochi, H. Shibata, T. Higuti, K. Kodama, T. Kusumi et al., Anti-Helicobacter pylori Compounds from Santalum album, J. Nat. Prod, vol.68, pp.819-824, 2005.

C. Dwivedi, E. R. Maydew, J. J. Hora, D. M. Ramaeker, and X. Guan, Chemopreventive effects of various concentrations of ?-santalol on skin cancer development in CD-1 mice, Eur. J. Cancer Prev, vol.14, pp.473-476, 2005.

H. Okugawa, R. Ueda, K. Matsumoto, K. Kawanishi, and K. Kato, Effects of sesquiterpenoids from 'Oriental incenses' on acetic acid-induced writhing and D2 and 5-HT2A receptors in rat brain, Phytomedicine, vol.7, pp.417-422, 2000.

Y. Asakawa, M. Toyota, and T. Takemoto, New diterpenes from Porella perrottetiana, Phytochemistry, vol.18, pp.1681-1685, 1979.

Y. Fukuyama, M. Tori, M. Wakamatsu, and Y. Asakawa, Norpinguisone methyl ester and norpinguisanolide, pinguisane-type norsesquiterpenoids from porella elegantula, Phytochemistry, vol.27, pp.3557-3561, 1988.

V. Chaturvedula, I. Prakash, and . ?01?, Isolation of Stigmasterol and -Sitosterol from the dichloromethane extract of Rubus suavissimus, p.16, 2017.

O. Chaves, R. Gomes, A. Tomaz, M. Fernandes, L. Das-graças-mendes-junior et al., Secondary Metabolites from Sida rhombifolia L. (Malvaceae) and the Vasorelaxant Activity of Cryptolepinone, Molecules, vol.18, pp.2769-2777, 2013.

, Human Metabolome Database: 1H NMR Spectrum (HMDB00258), p.17, 2017.

W. Geis and H. Becker, Odoriferous sesquiterpenoids from the liverwort Gackstroemia decipiens, Flavour Fragr. J, vol.16, pp.422-424, 2001.

M. Balouiri, M. Sadiki, and S. K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review, J. Pharm. Anal, vol.6, pp.71-79, 2016.

C. Thieury, Recherche de composés anticancéreux dans la biodiversité végétale de la, 2016.

J. P. Nataro and J. B. Kaper, Diarrheagenic Escherichia coli, Clin. Microbiol. Rev, vol.11, pp.142-201, 1998.

M. Otto, Staphylococcus epidermidis -the 'accidental' pathogen, Nat. Rev. Microbiol, vol.7, pp.555-567, 2009.

F. D. Lowy, Antimicrobial resistance: the example of Staphylococcus aureus, J. Clin. Invest, vol.111, pp.1265-1273, 2003.

D. A. Tadesse, S. Zhao, E. Tong, S. Ayers, A. Singh et al., Antimicrobial Drug Resistance in Escherichia coli from Humans and Food Animals, Emerg. Infect. Dis, vol.18, pp.741-749, 1950.

J. W. Costerton, P. S. Stewart, and E. P. Greenberg, Bacterial Biofilms: A Common Cause of Persistent Infections, Science, vol.284, pp.1318-1322, 1999.

Y. D. Tremblay, S. Hathroubi, and M. Jacques, Les biofilms bactériens: leur importance en santé animale et en santé publique, Can. J. Vet. Res, vol.78, pp.110-116, 2014.

J. Thiolet, S. Vaux, M. Lamy, A. Gautier, A. Barret et al., Enquête nationale de prévalence des infections nosocomiales et des traitements anti-infectieux en établissements de santé, p.2012, 2012.

J. Lucet, , 2015.

M. Saadatian-elahi, R. Teyssou, and P. Vanhems, The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, Int. J. Surg, vol.6, 2008.

D. Bukvicki, D. Gottardi, A. K. Tyagi, M. Veljic, P. D. Marin et al., Scapania nemorea liverwort extracts: Investigation on volatile compounds, in vitro antimicrobial activity and control of Saccharomyces cerevisiae in fruit juice, LWT -Food Sci. Technol, vol.55, pp.452-458, 2014.

S. Seo, K. Gomi, H. Kaku, H. Abe, H. Seto et al., Identification of Natural Diterpenes that Inhibit Bacterial Wilt Disease in Tobacco, Tomato and Arabidopsis, Plant Cell Physiol, vol.53, pp.1432-1444, 2012.

, COMPOSES DETECTES PAR CPG-FID-MS NON IDENTIFIES, vol.3

L. Plagiochilaceae, . Lepidoziaceae, L. Porellaceae, and . Et-frullaniaceae, La composition chimique, notamment en constituants volatils, de ces espèces a pu être établie pour la première fois pour la majorité des espèces étudiées, et il s'agit de la première étude phytochimique réalisée sur les genres Chiastocaulon et Acromastigum. Environ 260 constituants ont pu être déterminés pour ces espèces ci-étudiées, ils appartiennent en majorité à la famille des terpénoïdes, et à d'autres familles de métabolites secondaires d'intérêt tels que les composés aromatiques. Quatre nouveaux produits naturels ont pu être isolés et caractérisés : un dérivé du chromène (le 2-hydroxy-4,6-diméthoxy-3-(?'-méthyl-?'-butènyl)-benzoate de méthyl isolé de Plagiochila bicornuta), un sesquiterpénoïde (le zier-13,14-dien-5-ol isolé de Bazzania francana, Résumé L'étude phytochimique des hépatiques de la Nouvelle-Calédonie a été réalisée sur 34 espèces d'hépatique (dont 14 endémiques) appartenant à six familles

L. Plagiochilaceae, Les extraits à l'éther les plus actifs sont ceux de Bazzania parisii (actif sur S. epidermidis avec une CI 50 de 19,3±0,8 ?g/ml) et de Bazzania subintegra (actif sur S. aureus avec une CI 50 de 16,3±1,1 ?g/ml). Les extraits méthanoliques les plus actifs sont ceux : de Bazzania serrifolia (actif sur S. aureus avec une CI 50 de 17,7±1,9 ?g / ml), de Chiastocaulon caledonicum, L'activité antibactérienne d'extraits d'espèces issues de trois familles, vol.6, pp.7-8

, AD212 (actif sur S. epidermis avec une CI 50 de 14,1±1 ?g/ml) et de Bazzania francana, ?g/ml), de Bazzania sp

L. Plagiochilaceae, . Lepidoziaceae, L. Porellaceae, and F. , Nearly 260 compounds were reported as identified constituents of these plants extracts, most of them being terpene components and the others belonging to other interesting secondary metabolites families such as aromatic compounds. Four new natural products had been characterized respectively : a chromene derivative named as 2-hydroxy-4,6-dimethoxy-3-(?'-methyl-?'-butenyl)-methyl benzoate isolated from Plagiochila bicornuta, a sesquiterpene compound called zier-13,14-dien-5-ol isolated from Bazzania francana, Abstract Phytochemical survey of 34 New-Caledonian liverwort species (including 14 endemic species) belonging to six families

, The most active ether extracts were found to be those from Bazzania parisii (active on S. epidermidis having an IC 50 of 19.3±0.8 ?g/ml) and from Bazzania subintegra (active on S. aureus having an IC 50 of 16.3±1.1 ?g/ml). The most active methanolic extracts were found to be respectively from : Bazzania serrifolia (active on S. aureus having an IC 50 of 17.7±1.9 ?g / ml), Chiastocaulon caledonicum (active on S. aureus having an IC 50 of 6,7±1 ?g/ml), Bazzania sp. AD212 (active on S. epidermis having an IC 50 of 14.1±1 ?g/ml) and Bazzania francana, Antibacterial activity of liverworts extracts from three Hepaticeae families (Plagiochilaceae, Lepidoziaceae, and Lejeuneaceae) had been shown on two strains (Staphylococcus aureus